Ваш бизнес - От идеи до реализации

Понятие жизненного цикла программного обеспечения (ЖЦ ПО) является одним из базовых в программной инженерии. Жизненный цикл определяют как период времени, который начинается с момента принятия решения о необходимости создания ПО и заканчивается в момент его полного изъятия из эксплуатации.

В соответствии со стандартом ISO/IEC 12207 все процессы ЖЦ разделены на три группы (рис. 2.1).

Под моделью жизненного цикла ПО понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач на протяжении ЖЦ. Она зависит от специфики, масштаба и сложности проекта и специфики условий, в которых система создается и функционирует. В состав жизненного цикло ПО обычно включаются следующие стадии:

1. Формирование требований к ПО.

2. Проектирование.

3. Реализация.

4.Тестирование.

5. Ввод в действие.

6. Эксплуатация и сопровождение.

7. Снятие с эксплуатации.

В настоящее время наибольшее распространение получили следующие основные модели ЖЦ ПО:

a) каскадная и

b) спиральная (эволюционная).

Первая применялась для программ небольшого объема, представляющих собой единое целое. Принципиальной особенностью каскадного подхода является то, что переход на следующую стадию осуществляется только после того, как будет полностью завершена работа на текущей, и возвратов на пройденные стадии не предусматривается. Ее схема приведена на рис. 2.2.

Преимущества применения каскадной модели заключаются в следующем:

На каждой стадии формируется законченный набор проектной документации;

Выполняемые стадии работ позволяют планировать срок их завершения и соответствующие затраты.

Такая модель применяется для систем, к которым уже в начале разработки можно точно сформулировать все требования. К ним относятся, например, системы, в которых решаются, в основном, задачи вычислительного типа. Реальные процессы обычно имеют итерационный характер: результаты очередной стадии часто вызывают изменения в проектных решениях, выработанных на более ранних стадиях. Таким образом, более распространенной является модель с промежуточным контролем, которая приведена на рис. 2.3.

Основным недостатком каскадного подхода является существенное запаздывание с получением результатов и, как следствие, достаточно высокий риск создания системы, не удовлетворяющей изменившимся потребностям пользователей.

Эти проблемы устраняются в спиральной модели жизненного цикла (рис. 2.4). Ее принципиальной особенность является то, что прикладное ПО создается не сразу, как в случае каскадного подхода, а по частям с использованием метода прототипирования . Под прототипом понимается действующий программный компонент, реализующий отдельные функции и внешний интерфейс разрабатываемого ПО. Создание прототипов осуществляется в несколько итераций - витков спирали.

Каскадную (эволюционную) модель можно представить в виде диаграммы, которая приведена на рисунке 2.5.

Одним из результатов применения спиральной модели ЖЦ является получивший широкое распространение способ так называемой быстрой разработки приложений , или RAD (Rapid Application Development). Жизненный цикл ПО в соответствии с этим способом включает в себя четыре стадии:

1) анализ и планирование требований;

2) проектирование;

3) реализация;

4) внедрение.

Анализ жизненного цикла программ позволяет уточнить содержание и выделить следующие процессы проектирования сложных систем.

1) Стратегия;

2) Анализ;

3) Проектирование;

4) Реализация;

5) Тестирование;

6) Внедрение;

7) Эксплуатация и техническая поддержка.

Стратегия

Определение стратегии предполагает обследование системы. Основная задача обследования - оценка реального объема проекта, его целей и задач, а также получение определений сущностей и функций на высоком уровне. На этом этапе привлекаются высококвалифицированные бизнес-аналитики, которые имеют постоянный доступ к руководству фирмы. Кроме того, предполагается тесное взаимодействие с основными пользователями системы и бизнес-экспертами. Основная задача такого взаимодействия - получить как можно более полную информацию о системе, однозначно понять требования заказчика и передать полученную информацию в формализованном виде системным аналитикам. Как правило, информация о системе может быть получена на основании ряда бесед (или семинаров) с руководством, экспертами и пользователями.

Итогом этапа определения стратегии становится документ, в котором четко сформулировано следующее:

Что именно причитается заказчику, если он согласится финансировать проект;

Когда он сможет получить готовый продукт (график выполнения работ);

Во сколько это ему обойдется (график финансирования этапов работ для крупных проектов).

В документе должны быть отражены не только затраты, но и выгода, например срок окупаемости проекта, ожидаемый экономический эффект (если его удается оценить).

Рассматриваемый этап жизненного цикла ПО может быть представлен в модели только один раз, особенно если модель имеет циклическую структуру. Это не означает, что в циклических моделях стратегическое планирование производится раз и навсегда. В таких моделях этапы определения стратегии и анализа как бы объединяются, а их разделение существует лишь на самом первом витке, когда руководство предприятия принимает принципиальное решение о старте проекта. В целом стратегический этап посвящен разработке документа уровня руководства предприятия.

Этап анализа предполагает подробное исследование бизнес-процессов (функций, определенных на предыдущем этапе) и информации, необходимой для их выполнения (сущностей, их атрибутов и связей (отношений)). Этот этап дает информационную модель, а следующий за ним этап проектирования - модель данных.

Вся информация о системе, собранная на этапе определения стратегии, формализуется и уточняется на этапе анализа. Особое внимание уделяется полноте полученной информации, ее анализу на непротиворечивость, а также поиску неиспользуемой или дублирующейся информации. Как правило, заказчик вначале формирует требования не к системе в целом, а к отдельным ее компонентам. И в этом конкретном случае циклические модели жизненного цикла ПО имеют преимущество, поскольку с течением времени с большой вероятностью потребуется повторный анализ, так как у заказчика зачастую аппетит приходит во время еды. На этом же этапе определяются необходимые компоненты плана тестирования.

Аналитики собирают и фиксируют информацию в двух взаимосвязанных формах:

a) функции - информация о событиях и процессах, которые происходят в бизнесе;

b) сущности - информация о предметах, которые имеют значение для организации и о которых что-либо известно.

При этом строятся диаграммы компонентов, потоков данных и жизненных циклов, которые описывают динамику системы. Они будут рассмотрены позднее.

Проектирование

На этапе проектирования формируется модель данных. Проектировщики обрабатывают данные анализа. Конечным продуктом этапа проектирования являются схема базы данных (если таковая существует в проекте) или схема хранилища данных (ER-модель) и набор спецификаций модулей системы (модель функций).

В небольшом проекте (например, в курсовом) одни и те же люди могут выступать в роли и аналитиков, и проектировщиков, и разработчиков. Перечисленные выше схемы и модели помогают найти, например, не описанные вообще, нечетко описанные, противоречиво описанные компоненты системы и прочие недостатки, что способствует предотвращению потенциальных ошибок.

Все спецификации должны быть очень точными. План тестирования системы также дорабатывается на этом этапе разработки. Во многих проектах результаты этапа проектирования оформляются в виде единого документа - так называемой технической спецификации. При этом широкое применение получил язык UML, который позволяет получить одновременно как документы анализа, отличающиеся меньшей детализацией (их потребители - менеджеры производства), так и документы проектирования (их потребители - менеджеры групп разработки и тестирования). Этот язык будет рассмотрен позднее. Программное обеспечение, построенное с применением UML, позволяет проще осуществить генерацию кода - как минимум иерархию классов, а также некоторые части кода самих методов (процедур и функций).

Задачами проектирования являются:

Рассмотрение результатов анализа и проверка их полноты;

Семинары с заказчиком;

Определение критических участков проекта и оценка его ограничений;

Определение архитектуры системы;

Принятие решения об использовании продуктов сторонних разработчиков, а также о способах интеграции и механизмах обмена информацией с этими продуктами;

Проектирование хранилища данных: модель базы данных;

Проектирование процессов и кода: окончательный выбор средств разработки, определение интерфейсов программ, отображение функций системы на ее модули и определение спецификаций модулей;

Определение требований к процессу тестирования;

Определение требований к безопасности системы.

Реализация

При реализации проекта особенно важно координировать группу (группы) разработчиков. Все разработчики должны подчиняться жестким правилам контроля исходных текстов. Они, получив технический проект, начинают писать код модулей. Основная задача разработчиков состоит в том, чтобы уяснить спецификацию: проектировщик написал, что надо сделать, а разработчик определяет, как это сделать.

На этапе разработки осуществляется тесное взаимодействие проектировщиков, разработчиков и групп тестировщиков. В случае интенсивной разработки тестировщик буквально неразлучен с разработчиком, фактически становясь членом группы разработки.

Чаще всего на этапе разработки меняются интерфейсы пользователя. Это обусловлено периодической демонстрацией модулей заказчику. Он также может существенно изменять запросы к данным.

Этап разработки сопряжен с этапом тестирования, и оба процесса идут параллельно. Синхронизирует действия тестеров и разработчиков система bug tracking.

Ошибки должны быть классифицированы согласно приоритетам. Для каждого класса ошибок должна быть определена четкая структура действий: «что делать», «как срочно», «кто ответственен за результат». Каждая проблема должна отслеживаться проектировщиком/разработчиком/тестировщиком, отвечающим за ее устранение. То же самое касается ситуаций, когда нарушаются запланированные сроки разработки и передачи модулей на тестирование.

Кроме того, должны быть организованы хранилища готовых модулей проекта и библиотек, которые используются при сборке модулей. Это хранилище постоянно обновляется. Контролировать процесс обновления должен один человек. Одно хранилище создается для модулей, прошедших функциональное тестирование, второе - для модулей, прошедших тестирование связей. Первое - это черновики, второе - то, из чего уже можно собирать дистрибутив системы и демонстрировать его заказчику для проведения контрольных испытаний или для сдачи каких-либо этапов работ.

Тестирование

Группы тестирования могут привлекаться к сотрудничеству уже на ранних стадиях разработки проекта. Обычно комплексное тестирование выделяют в отдельный этап разработки. В зависимости от сложности проекта тестирование и исправление ошибок может занимать треть, половину общего времени работы над проектом и даже больше.

Чем сложнее проект, тем больше будет потребность в автоматизации системы хранения ошибок - bug tracking, которая обеспечивает следующие функции:

Хранение сообщения об ошибке (к какому компоненту системы относится ошибка, кто ее нашел, как ее воспроизвести, кто отвечает за ее исправление, когда она должна быть исправлена);

Система уведомления о появлении новых ошибок, об изменении статуса известных в системе ошибок (уведомления по электронной почте);

Отчеты об актуальных ошибках по компонентам системы;

Информация об ошибке и ее история;

Правила доступа к ошибкам тех или иных категорий;

Интерфейс ограниченного доступа к системе bug tracking для конечного пользователя.

Подобные системы берут на себя множество организационных проблем, в частности вопросы автоматического уведомления об ошибках.

Собственно тесты систем принято подразделять на несколько категорий:

a) автономные тесты модулей; они используются уже на этапе разработки компонентов системы и позволяют отслеживать ошибки отдельных компонентов;

b) тесты связей компонентов системы; эти тесты также используются и на этапе разработки, они позволяют отслеживать правильность взаимодействия и обмена информацией компонентов системы;

c) системный тест ; он является основным критерием приемки системы; как правило, это группа тестов, включающая и автономные тесты, и тесты связей и модели; такой тест должен воспроизводить работу всех компонентов и функций системы; его основная цель - внутренняя приемка системы и оценка ее качества;

d) приемосдаточный тест ; основное его назначение - сдать систему заказчику;

e) тесты производительности и нагрузки ; эта группа тестов входит в системный, именно она является основной для оценки надежности системы.

В каждую группу обязательно входят тесты моделирования отказов. Они проверяют реакцию компонента, группы компонентов, а также системы в целом на следующие отказы:

Отдельного компонента информационной системы;

Группы компонентов системы;

Основных модулей системы;

Операционной системы;

Жесткий сбой (отказ питания, жестких дисков).

Эти тесты позволяют оценить качество подсистемы восстановления корректного состояния информационной системы и служат основным источником информации для разработки стратегий предотвращения негативных последствий сбоев при промышленной эксплуатации.

Еще одним важным аспектом программы тестирования информационных систем является наличие генераторов тестовых данных. Они используются для проведения тестов функциональности, надежности и производительности системы. Задачу оценки характеристик зависимости производительности информационной системы от роста объемов обрабатываемой информации без генераторов данных решить невозможно.

Внедрение

Опытная эксплуатация перекрывает процесс тестирования. Система редко вводится полностью. Как правило, это процесс постепенный или итерационный (в случае циклического жизненного цикла).

Ввод в эксплуатацию проходит как минимум три стадии:

2) накопление информации;

3) выход на проектную мощность (то есть собственно переход к этапу эксплуатации).

информации может вызвать довольно узкий спектр ошибок: в основном, рассогласование данных при загрузке и собственные ошибки загрузчиков. Для их выявления и устранения применяют методы контроля качества данных. Такие ошибки должны быть исправлены как можно быстрее.

В период накопления информации в информационной системе выявляется наибольшее количество ошибок, связанных с многопользовательским доступом. Вторая категория исправлений связана с тем, что пользователя не устраивает интерфейс. При этом циклические модели и модели с обратной связью этапов позволяют снизить затраты. Рассматриваемый этап является также наиболее серьезным тестом - тестом одобрения пользователем (customer acceptance tests).

Выход системы на проектную мощность в хорошем варианте - это доводка мелких ошибок и редкие серьезные ошибки.

Эксплуатация и техническая поддержка

На этом этапе последним документом для разработчиков является акт технической приемки. Документ определяет необходимый персонал и требуемое оборудование для поддержки работоспособности системы, а также условия нарушения эксплуатации продукта и ответственность сторон. Помимо этого обычно в виде отдельного документа оформляются условия технической поддержки.

Тема: Классические и гибкие модели ЖЦПП: определение, описание, отличительные особенности, последовательность этапов. Методы выбора модели ЖЦПП при разработке ПО различных предметных областей.


Источник информации https://www.intuit.ru/studies/courses/3632/874/print_lecture/14297

Модели и стадии ЖЦ ПО

Под моделью ЖЦ ПО понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач на протяжении ЖЦ ПО . Модель ЖЦ зависит от специфики, масштаба и сложности проекта и специфики условий, в которых система создается и функционирует.

Стандарт ISO / IEC 12207 не предлагает конкретную модель ЖЦ и методы разработки ПО . Его положения являются общими для любых моделей ЖЦ, методов и технологий разработки ПО . Стандарт описывает структуру процессов ЖЦ ПО , но не конкретизирует, как реализовать или выполнить действия и задачи, включенные в эти процессы.

Модель ЖЦ любого конкретного ПО определяет характер процесса его создания, который представляет собой совокупность упорядоченных во времени, взаимосвязанных и объединенных в стадии (фазы) работ , выполнение которых необходимо и достаточно для создания ПО , соответствующего заданным требованиям.

Под стадией (фазой) создания ПО понимается часть процесса создания ПО , ограниченная некоторыми временными рамками и заканчивающаяся выпуском конкретного продукта (моделей ПО , программных компонентов, документации и пр.), определяемого заданными для данной стадии требованиями. Стадии создания ПО выделяются по соображениям рационального планирования и организации работ , заканчивающихся заданными результатами. В состав ЖЦ ПО обычно включаются следующие стадии:

  1. формирование требований к ПО;
  2. проектирование (разработка системного проекта);
  3. реализация (может быть разбита на подэтапы: детальное проектирование, кодирование);
  4. тестирование (может быть разбито на автономное и комплексное тестирование и интеграцию);
  5. ввод в действие (внедрение);
  6. эксплуатация и сопровождение;
  7. снятие с эксплуатации.

Некоторые специалисты вводят дополнительно начальную стадию – анализ осуществимости системы. Здесь имеется в виду программно-аппаратная система, для которой создается, приобретается или модифицируется ПО .

Стадия формирования требований к ПО является одной из важнейших и определяет в значительной (даже решающей!) степени успех всего проекта. Началом этой стадии является получение одобренной и утвержденной архитектуры системы с включением основных соглашений о распределении функций между аппаратурой и программами. Этот документ должен также содержать подтверждение общего представления о функционировании ПО с включением основных соглашений о распределении функций между человеком и системой.

Стадия формирования требований к ПО включает следующие этапы.

  1. Планирование работ, предваряющее работы над проектом. Основными задачами этапа являются определение целей разработки, предварительная экономическая оценка проекта, построение плана-графика выполнения работ, создание и обучение совместной рабочей группы.
  2. Проведение обследования деятельности автоматизируемой организации (объекта), в рамках которого осуществляются предварительное выявление требований к будущей системе определение структуры организации, определение перечня целевых функций организации, анализ распределения функций по подразделениям и сотрудникам, выявление функциональных взаимодействий между подразделениями, информационных потоков внутри подразделений и между ними, внешних по отношению к организации объектов и внешних информационных воздействий, анализ существующих средств автоматизации деятельности организации.
  3. Построение модели деятельности организации (объекта), предусматривающее обработку материалов обследования и построение двух видов моделей:

    • модели "AS-IS" ("как есть"), отражающей существующее на момент обследования положение дел в организации и позволяющей понять, каким образом работает данная организация, а также выявить узкие места и сформулировать предложения по улучшению ситуации;
    • модели "TO-BE" ("как должно быть"), отражающей представление о новых технологиях работы организации.

Каждая из моделей должна включать полную функциональную и информационную модель деятельности организации, а также (при необходимости) модель, описывающую динамику поведения организации. Заметим, что построенные модели имеют самостоятельное практическое значение , независимо от того, будет ли на предприятии разрабатываться и внедряться информационная система, поскольку с их помощью можно обучать сотрудников и совершенствовать бизнес-процессы предприятия.

Результатом завершения стадии формирования требований к ПО являются спецификации ПО , функциональные, технические и интерфейсные спецификации, для которых подтверждена их полнота , проверяемость и осуществимость.

Стадия проектирования включает следующие этапы.

  1. Разработка системного проекта ПО. На этом этапе дается ответ на вопрос "Что должна делать будущая система?", а именно: определяются архитектура системы, ее функции, внешние условия функционирования, интерфейсы и распределение функций между пользователями и системой, требования к программным и информационным компонентам, состав исполнителей и сроки разработки, план отладки ПО и контроль качества.

    Основу системного проекта составляют модели проектируемой системы, которые строятся на модели "TO-BE". Результатом разработки системного проекта должна быть одобренная и подтвержденная спецификация требований к ПО: функциональные, технические и интерфейсные спецификации, для которых подтверждена их полнота, проверяемость и осуществимость.

  2. Разработка детального (технического) проекта. На этом этапе осуществляется собственно проектирование ПО, включающее проектирование архитектуры системы и детальное проектирование. Таким образом, дается ответ на вопрос: "Как построить систему, чтобы она удовлетворяла требованиям?"

Результатом детального проектирования является разработка верифицированной спецификации ПО , включающей:

  • формирование иерархии программных компонентов, межмодульных интерфейсов по данным и управлению;
  • спецификация каждого компонента ПО, имени, назначения, предположений, размеров, последовательности вызовов, входных и выходных данных, ошибочных выходов, алгоритмов и логических схем;
  • формирование физической и логической структур данных до уровня отдельных полей;
  • разработку плана распределения вычислительных ресурсов (времени центральных процессоров, памяти и др.);
  • верификацию полноты, непротиворечивости, осуществимости и обоснованности требований;
  • предварительный план комплексирования и отладки, план руководства для пользователей и приемных испытаний.

Завершением стадии детального проектирования является сквозной контроль проекта или критический поблочный анализ проекта.

Стадия реализации – выполнение следующих работ .

  1. Разработка верифицированной детальной спецификации каждой подпрограммы (блока не более чем из 100 исходных команд языка высокого уровня).

    Внешние спецификации должны содержать следующие сведения:

    • имя модуля - указывается имя, применяемое для вызова модуля (для модуля с несколькими входами для каждого входа должны быть отдельные спецификации);
    • функция – дается определение функции или функций, выполняемых модулем;
    • список параметров (число и порядок следования), передаваемых модулю;
    • входные параметры – точное описание всех данных, возвращаемых модулем (должно быть определено поведение модуля при любых входных условиях);
    • внешние эффекты (печать сообщения, чтение запроса с терминала и т. п.).
  2. Проектирование логики модулей и программирование (кодирование) модулей.
  3. Проверка правильности модулей.
  4. Тестирование модулей.
  5. Описание базы данных до уровня отдельных параметров, символов и битов.
  6. План приемных испытаний.
  7. Руководство пользователю.
  8. Предварительный план комплексирования и отладки. Содержание последующих стадий в основном совпадает с соответствующими процессами ЖЦ ПО. Вообще технологические стадии выделяются исходя из соображений разумного и рационального планирования и организации работ. Возможный вариант взаимосвязи и стадий работ с процессами ЖЦ ПО показан на рисунке.


Рис. 1.

Виды моделей ЖЦ ПО

Каскадная модель (классический жизненный цикл)

Эта модель обязана своим появлением У. Ройсу (1970 г.). Модель имеет и другое название – водопад (waterfall). Особенность модели – переход на следующую ступень осуществляется только после того, как будет полностью завершена работа на предыдущей стадии; возвратов на пройденные стадии не предусматривается.


Рис. 2.

Требования к разрабатываемой ПС, определенные на стадиях формирования и анализа, строго документируются в виде ТЗ и фиксируются на все время разработки проекта. Каждая стадия завершается выпуском полного комплекта документации (ТЗ, ЭП, ТП, РП), достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков. Критерием качества разработки при таком подходе является точность выполнения спецификаций ТЗ. Основное внимание разработчиков сосредоточивается на достижении оптимальных значений технических характеристик разрабатываемой ПС – производительности, объема занимаемой памяти и др.

Преимущества каскадной модели :

  • на каждой стадии формируется законченный набор проектной документации, отвечающей критериям полноты и согласованности;
  • выполняемые в логической последовательности стадии работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Каскадный подход хорошо зарекомендовал себя при построении ПС, для которых в самом начале проекта можно полно и четко сформулировать все требования. Пока все это контролируется стандартами и различными комиссиями госприемки, схема работает хорошо.

Недостатки каскадной модели :

  • выявление и устранение ошибок производится только на стадии тестирования, которое может существенно растянуться;
  • реальные проекты часто требуют отклонения от стандартной последовательности шагов;
  • цикл основан на точной формулировке исходных требований к ПС, реально в начале проекта требования заказчика определены лишь частично;
  • результаты работ доступны заказчику только по завершении проекта.

Итерационная модель ЖЦ ПС

С ростом коммерческих проектов выяснилось, что не всегда удается детально проработать проект будущей системы, поскольку многие аспекты ее функционирования в динамических сферах деятельности (бизнес) меняются, пока система создается. Потребовалось изменить процесс разработки так, чтобы гарантировать внесение необходимых исправлений после завершения какого-либо этапа разработки. Так появилась итерационная модель ЖЦ ПС, называемая моделью с промежуточным контролем или моделью с циклическим повторением фаз.


Рис. 3.

В итерационной модели недостатки проектирования и программирования могут быть устранены позже путем частичного возврата на предыдущую стадию. Чем ниже уровень обнаружения ошибки, тем дороже ее исправление. Если стоимость усилий, необходимых для обнаружения и устранения ошибок на стадии написания кода, принять за единицу, то стоимость выявления и устранения ошибки на стадии выработки требований будет в 5-10 раз меньше, а стоимость выявления и устранения ошибки на стадии сопровождения – в 20 раз больше.


Рис. 4.

В такой ситуации огромное значение приобретает этап формулирования требований, составление спецификаций и создание плана системы. Программные архитекторы несут личную ответственность за все последующие изменения проектных решений. Объем документации исчисляется тысячами страниц, число утверждающих заседаний огромно. Многие проекты так никогда и не покидают этап планирования, впав в " паралич анализа". Одним из возможных путей исключения подобных ситуаций является макетирование (прототипирование).

Макетирование

Часто заказчик не может сформулировать требования по вводу, обработке или выводу данных для будущего программного продукта. Разработчик может сомневаться в приспособленности продукта к операционной системе, в форме диалога с пользователем или эффективности алгоритма. В таких случаях целесообразно использовать макетирование. Основная цель макетирования – снять неопределенность в требованиях заказчика. Макетирование (прототипирование) – процесс создания модели требуемого продукта.

Модель может принимать следующие формы.

  1. Бумажный макет (рисованная схема человеко-машинного диалога) или макет на основе ПК.
  2. Работающий макет, реализующий некоторую часть требуемых функций.
  3. Существующая программа, характеристики которой должны быть улучшены.

Как показано на рисунке, макетирование основывается на многократном повторении итераций, в которых участвуют заказчик и разработчик.


Рис. 5.

Последовательность действий при макетировании представлена на рисунке. Макетирование начинается со сбора и уточнения требований к создаваемой программной системе. Разработчик и заказчик совместно определяют цели ПО, устанавливают, какие требования известны, а какие предстоит доопределить. Затем выполняется быстрое проектирование. В нем сосредотачиваются на характеристиках, которые должны быть видимыми пользователю. Быстрое проектирование приводит к построению макета. Макет оценивается заказчиком и используется для уточнения требований к ПО. Итерации продолжаются до тех пор, пока макет не выявит все требования заказчика и даст возможность разработчику понять, что должно быть сделано.

Достоинства макетирования – возможность обеспечения определения полных требований к системе. Недостатки макетирования:

  • заказчик может принять макет за продукт;
  • разработчик может принять макет за продукт.

Следует пояснить суть недостатков. Когда заказчик видит работающую версию ПС, он перестает сознавать, что в погоне за работающим вариантом ПС оставлены нерешенными многие вопросы качества и удобства сопровождения системы. Когда же заказчику об этом говорит разработчик, то ответом может быть возмущение и требование скорейшего превращения макета в рабочий продукт. Это отрицательно сказывается на управлении разработкой ПО.


Рис. 6.

С другой стороны, для быстрого получения работающего макета разработчик часто идет на определенные компромиссы. Например, могут использоваться не самые подходящие языки программирования или операционная система. Для простой демонстрации может применяться неэффективный (простой) алгоритм. Спустя некоторое время разработчик забывает о причинах, по которым эти средства не подходят. В результате далеко не идеальный выбранный вариант интегрируется в систему.

Прежде чем рассматривать другие модели ЖЦ ПО, которые пришли на смену каскадной модели , следует остановиться на стратегиях конструирования программных систем. Именно стратегия конструирования ПО во многом определяет модель ЖЦ ПО.

Стратегии конструирования ПО

Существует три стратегии конструирования программных систем:

  • однократный проход (каскадная стратегия, рассмотренная выше) – линейная последовательность этапов конструирования;
  • инкрементная стратегия. В начале процесса определяются все пользовательские и системные требования, оставшаяся часть конструирования выполняется в виде последовательности версий. Первая версия реализует часть запланированных возможностей, следующая версия реализует дополнительные возможности и т. д., пока не будет получена полная система;
  • эволюционная стратегия. Система также строится в виде последовательности версий, но в начале процесса определяются не все требования. Требования уточняются в результате разработки версий. Характеристики стратегий конструирования ПО с соответствии с требованиями стандарта IEEE/EIA 12207 приведены в таблице 1.

Инкрементная модель

Инкрементная модель является классическим примером инкрементной стратегии конструирования. Она объединяет элементы последовательной водопадной модели с итерационной философией макетирования (предложена Б. Боэмом как усовершенствование каскадной модели ). Каждая линейная последовательность здесь вырабатывает поставляемый инкремент ПО. Например, ПО для обработки слов в 1-м инкременте (версии) реализует функции базовой обработки файлов, функции редактирования и документирования; во 2-м инкременте – более сложные возможности редактирования и документирования; в 3-м инкременте – проверку орфографии и грамматики; в 4-м инкременте – возможности компоновки страницы.

Первый инкремент приводит к получению базового продукта, реализующего базовые требования (правда, многие вспомогательные требования остаются нереализованными). План следующего инкремента предусматривает модификацию базового продукта, обеспечивающую дополнительные характеристики и функциональность.

По своей природе инкрементный процесс итеративен, но, в отличие от макетирования, инкрементная модель обеспечивает на каждом инкременте работающий продукт.

Схема такой модели ЖЦ ПО приведена на рисунке. Одной из современных реализаций инкрементного подхода является экстремальное программирование (ориентировано на очень малые приращения функциональности).


Рис. 7.

Спиральная модель ЖЦ ПО

Спиральная модель – классический пример применения эволюционной стратегии конструирования. Модель (автор Б. Боэм, 1988) базируется на лучших свойствах классического жизненного цикла и макетирования, к которым добавляется новый элемент – анализ риска, отсутствующий в этих парадигмах. Модель определяет четыре действия, представляемые четырьмя квадрантами спирали.


Рис. 8.
  1. Планирование – определение целей, вариантов и ограничений.
  2. Анализ риска – анализ вариантов и распознавание/выбор риска.
  3. Конструирование – разработка продукта следующего уровня.
  4. Оценивание – оценка заказчиком текущих результатов конструирования.

Интегрирующий аспект спиральной модели очевиден при учете радиального измерения спирали. С каждой итерацией по спирали строятся все более полные версии ПС. В первом витке спирали определяются начальные цели, варианты и ограничения, распознается и анализируется риск. Если анализ риска показывает неопределенность требований, на помощь разработчику и заказчику приходит макетирование, используемое в квадранте конструирования.

Для дальнейшего определения проблемных и уточненных требований может быть использовано моделирование. Заказчик оценивает инженерную (конструкторскую) работу и вносит предложения по модификации (квадрант оценки заказчиком). Следующая фаза планирования и анализа риска базируется на предложениях заказчика. В каждом цикле по спирали результаты анализа риска формируются в виде "продолжать, не продолжать". Если риск слишком велик, проект может быть остановлен.

В большинстве случаев движение по спирали продолжается, с каждым шагом продвигая разработчиков к более общей модели системы. В каждом цикле по спирали требуется конструирование (нижний правый квадрант), которое может быть реализовано классическим жизненным циклом или макетированием. Заметим, что количество действий по разработке (происходящих в правом нижнем квадранте) возрастает по мере продвижения от центра спирали.

Эти действия пронумерованы и имеют следующее содержание:

  1. – начальный сбор требований и планирование проекта;
  2. – та же работа, но на основе рекомендаций заказчика;
  3. – анализ риска на основе начальных требований;
  4. – анализ риска на основе реакции заказчика;
  5. – переход к комплексной системе;
  6. – начальный макет системы;
  7. – следующий уровень макета;
  8. – сконструированная система;
  9. – оценивание заказчиком.

Достоинства спиральной модели :

  1. наиболее реально (в виде эволюции) отображает разработку программного обеспечения;
  2. позволяет явно учитывать риск на каждом витке эволюции разработки;
  3. включает шаг системного подхода в итерационную структуру разработки;
  4. использует моделирование для уменьшения риска и совершенствования программного изделия.

Недостатки спиральной модели :

  • сравнительная новизна (отсутствует достаточная статистика эффективности модели);
  • повышенные требования к заказчику;
  • трудности контроля и управления временем разработки.

Модель спирального процесса разработки является наиболее распространенной в настоящее время. Самыми известными ее вариантами являются RUP (Rational Unified Process) от фирмы Rational и MSF (Microsoft Solution Framework). В качестве языка моделирования используется язык UML (Unified Modeling Language). Создание системы предполагается проводить итерационно, двигаясь по спирали и, проходя через одни и те же стадии, на каждом витке уточнять характеристики будущего продукта. Казалось бы, теперь все хорошо: и планируется только то, что можно предвидеть, разрабатывается то, что запланировано, и пользователи начинают знакомиться с продуктом заранее, имея возможность внести необходимые коррективы.

Однако для этого нужны очень большие средства. Действительно, если раньше можно было создавать и распускать группы специалистов по мере необходимости, то теперь все они должны постоянно участвовать в проекте: архитекторы, программисты, тестировщики, инструкторы и т. д. Более того, усилия различных групп должны быть синхронизированы, чтобы своевременно отражать проектные решения и вносить необходимые изменения.

Рациональный унифицированный процесс

Рациональный унифицированный процесс (Rational Unified Process, RUP) – одна из лучших методологий разработки программного обеспечения. Основываясь на опыте многих успешных программных проектов, RUP позволяет создавать сложные программные системы, основываясь на индустриальных методах разработки. Предпосылки для разработки RUP зародились в начале 1980-х гг. в Rational Software corporation. В начале 2003 г. Rational приобрела IBM. Одним из основных столпов, на которые опирается RUP, является процесс создания моделей при помощи унифицированного языка моделирования (UML).

RUP – одна из спиральных методологий разработки программного обеспечения. Методология поддерживается и развивается компанией Rational Software. В качестве языка моделирования в общей базе знаний используется язык Unified Modelling Language (UML). Итерационная и инкрементная разработка программного обеспечения в RUP предполагает разделение проекта на несколько проектов, которые выполняются последовательно, и каждая итерация разработки четко определена набором целей, которые должны быть достигнуты в конце итерации. Конечная итерация предполагает, что набор целей итерации должен в точности совпадать с набором целей, указанных заказчиком продукта, то есть все требования должны быть выполнены.

Процесс предполагает эволюционирование моделей; итерация цикла разработки однозначно соответствует определенной версии модели программного обеспечения. Каждая из итераций содержит элементы управления жизненным циклом программного обеспечения : анализ и дизайн (моделирование), реализация, интегрирование, тестирование, внедрение. В этом смысле RUP является реализацией спиральной модели , хотя довольно часто изображается в виде графика-таблицы..

На данном рисунке представлены два измерения: горизонтальная ось представляет время и показывает временные аспекты жизненного цикла процесса; вертикальная ось представляет дисциплины, которые определяют физическую структуру процесса. Видно, как с течением времени изменяются акценты в проекте. Например, в ранних итерациях больше времени отводится требованиям; в поздних итерациях больше времени отводится реализации. Горизонтальная ось сформирована из временных отрезков – итераций, каждая из которых является самостоятельным циклом разработки; цель цикла – принести в конечной продукт некоторую заранее определенную осязаемую доработку, полезную с точки зрения заинтересованных лиц.


Рис. 9.

По оси времени жизненный цикл делится на четыре основные фазы.

  1. Начало (Inception) – формирование концепции проекта, понимание того, что мы создаем, представление о продукте (vision), разработка бизнес-плана (business case), подготовка прототипа программы или частичного решения. Это фаза сбора информации и анализа требований, определение образа проекта в целом. Цель – получить поддержку и финансирование. В конечной итерации результат этого этапа – техническое задание.
  2. Проектирование, разработка (Elaboration) – уточнение плана, понимание того, как мы это создаем, проектирование, планирование необходимых действий и ресурсов, детализация особенностей. Завершается этап исполняемой архитектурой, когда все архитектурные решения приняты и риски учтены. Исполняемая архитектура представляет собой работающее программное обеспечение, которое демонстрирует реализацию основных архитектурных решений. В конечной итерации это – технический проект.
  3. Реализация, создание системы (Construction) – этап расширения функциональности системы, заложенной в архитектуре. В конечной итерации это – рабочий проект.
  4. Внедрение, развертывание (Transition). Создание конечной версии продукта. Фаза внедрения продукта, поставка продукта конкретному пользователю (тиражирование, доставка и обучение).

Вертикальная ось состоит из дисциплин, каждая из них может быть более детально расписана с точки зрения выполняемых задач, ответственных за них ролей, продуктов, которые подаются задачам на вход и выпускаются в ходе их выполнения и т.д.

По этой оси располагаются ключевые дисциплины жизненного цикла RUP, которые часто на русском языке называют процессами, хотя это не совсем верно с точки зрения данной методологии, поддерживаемые инструментальными средствами IBM (и/или третьих фирм).

  1. Бизнес-анализ и моделирование ( Business modeling ) обеспечивает реализацию принципов моделирования с целью изучения бизнеса организации и накопления знаний о нем, оптимизации бизнес-процессов и принятия решения об их частичной или полной автоматизации.
  2. Управление требованиями (Requirements) посвящено получению информации от заинтересованных лиц и ее преобразованию в набор требований, определяющих содержание разрабатываемой системы и подробно описывающих ожидания от того, что система должна делать.
  3. Анализ и проектирование (Analysis and design) охватывает процедуры преобразования требований в промежуточные описания (модели), представляющие, как эти требования должны быть реализованы.
  4. Реализация (Implementation) охватывает разработку кода, тестирование на уровне разработчиков и интеграцию компонентов, подсистем и всей системы в соответствии с установленными спецификациями.
  5. Тестирование (Test) посвящено оценке качества создаваемого продукта.
  6. Развертывание (Deployment) охватывает операции, имеющие место при передаче продуктов заказчикам и обеспечении доступности продукта конечным пользователям.
  7. Конфигурационное управление и управление изменениями (Configuration management) посвящено синхронизации промежуточных и конечных продуктов и управлению их развитием в ходе проекта и поиском скрытых проблем.
  8. Управление проектом (Management) посвящено планированию проекта, управлению рисками, контролю хода его выполнения и непрерывной оценке ключевых показателей.
  9. Управление средой (Environment) включает элементы формирования среды разработки информационной системы и поддержки проектной деятельности.

В зависимости от специфики проекта могут быть использованы любые средства IBM Rational, а также третьих фирм. В RUP рекомендовано следовать шести практикам, позволяющим успешно разрабатывать проект: итеративная разработка; управление требованиями; использование модульных архитектур; визуальное моделирование; проверка качества; отслеживание изменений.

Неотъемлемую часть RUP составляют артефакты (artefact), прецеденты ( precedent ) и роли (role). Артефакты – это некоторые продукты проекта, порождаемые или используемые в нем при работе над окончательным продуктом. Прецеденты – это последовательности действий, выполняемых системой для получения наблюдаемого результата. Фактически любой результат работы индивидуума или группы является артефактом, будь то документ анализа, элемент модели, файл кода, тестовый скрипт, описание ошибки и т. п. За создание того или иного вида артефактов отвечают определенные специалисты. Таким образом, RUP четко определяет обязанности – роли – каждого члена группы разработки на том или ином этапе, то есть когда и кто должен создать тот или иной артефакт. Весь процесс разработки программной системы рассматривается в RUP как процесс создания артефактов – начиная с первоначальных документов анализа и заканчивая исполняемыми модулями, руководствами пользователя и т.п.

Для компьютерной поддержки процессов RUP в IBM разработан широкий набор инструментальных средств:

  • Rational Rose – CASE- средство визуального моделирования информационных систем, имеющее возможности генерирования элементов кода. Специальная редакция продукта – Rational Rose RealTime – позволяет на выходе получить исполняемый модуль;
  • Rational Requisite Pro – средство управления требованиями, которое позволяет создавать, структурировать, устанавливать приоритеты, отслеживать, контролировать изменения требований, возникающие на любом этапе разработки компонентов приложения;
  • Rational ClearQuest – продукт для управления изменениями и отслеживания дефектов в проекте (bug tracking), тесно интегрирующийся со средствами тестирования и управления требованиями и представляющий собой единую среду для связывания всех ошибок и документов между собой;
  • Rational SoDA – продукт для автоматического генерирования проектной документации, позволяющий установить корпоративный стандарт на внутрифирменные документы. Возможно также приведение документации к уже существующим стандартам (ISO, CMM);
  • Rational Purify, Rational Quantify Rational PureCoverage, – средства тестирования и отладки;
  • Rational Visual Quantify – средство измерения характеристик для разработчиков приложений и компонентов, программирующих на C/C++, Visual Basic и Java; помогает определять и устранять узкие места в производительности ПО;
  • Rational Visual PureCoverage – автоматически определяет области кода, которые не подвергаются тестированию;
  • Rational ClearCase – продукт для управления конфигурацией программ (Rational"s Software Configuration Management, SCM ), позволяющий производить версионный контроль всех документов проекта. С его помощью можно поддерживать несколько версий проектов одновременно, быстро переключаясь между ними. Rational Requisite Pro поддерживает обновления и отслеживает изменения в требованиях для группы разработчиков;
  • SQA TeamTest – средство автоматизации тестирования ;
  • Rational TestManager – система управления тестированием, которая объединяет все связанные с тестированием инструментальные средства, артефакты, сценарии и данные;
  • Rational Robot – инструмент для создания, модификации и автоматического запуска тестов;
  • SiteLoad, SiteCheck – средства тестирования Web-сайтов на производительность и наличие неработающих ссылок;
  • Rational PerformanceStudio – измерение и предсказание характеристик производительности систем.

Этот набор продуктов постоянно совершенствуется и пополняется. Так, например, недавний продукт IBM Rational Software Architect (RSA) является частью IBM Software Development Platform – набора инструментов, поддерживающих жизненный цикл разработки программных систем. Продукт IBM Rational Software Architect предназначен для построения моделей разрабатываемых программных систем с использованием унифицированного языка моделирования UML 2.0, прежде всего моделей архитектуры разрабатываемого приложения. Тем не менее, RSA объединяет в себе функции таких программных продуктов, как Rational Application Developer, Rational Web Developer и Rational Software Modeler , тем самым предоставляя возможность архитекторам и аналитикам создавать различные представления разрабатываемой информационной системы с использованием языка UML 2.0, а разработчикам – выполнять разработку J2EE, XML, веб-сервисов и т.д.

Следуя принципам RUP, Rational Software Architect позволяет создавать необходимые модели в рамках рабочих процессов таких дисциплин, как:

  • бизнес-анализ и моделирование ( Business modeling );
  • управление требованиями (Requirements);
  • анализ и проектирование (Analysis and Design);
  • реализация (Implementation).

Кроме того, Rational Software Architect поддерживает технологию разработки, управляемой моделями (model-driven development, MDD), которая позволяет моделировать программное обеспечение на различных уровнях абстракции с возможностью трассируемости.

MSF (Microsoft Solution Framework)

В 1994 году, стремясь достичь максимальной отдачи от IT-проектов, Microsoft выпустила в свет пакет руководств по эффективному проектированию, разработке, внедрению и сопровождению решений, построенных на основе своих технологий. Эти знания базируются на опыте, полученном Microsoft при работе над большими проектами по разработке и сопровождению программного обеспечения, опыте консультантов Microsoft и лучшем из того, что накопила на данный момент IT-индустрия. Все это представлено в виде двух взаимосвязанных и хорошо дополняющих друг друга областей знаний: Microsoft Solutions Framework (MSF) и Microsoft Operations Framework (MOF).

Следует отметить, что Microsoft разработала на базе общих методов MSF методики для прикладного и специализированного применения. Причем Microsoft сертифицирует экспертов именно по прикладным знаниям в применении MSF (например, сертификация MCTS 74-131 по экспертизе в методике управления проектами). Перед тем как изучать методы MSF, следует сначала определить, какой прикладной вариант MSF имеется в виду.

Наиболее популярные прикладные варианты MSF, разработанные Microsoft:

  • методика внедрения решений в области управления проектами;
  • методика управления IT-проектами на базе методологий MSF и Agile.

Важность прикладных вариантов MSF подчеркивает тот факт, что в "чистом варианте" саму методику MSF в своих IT-проектах компания Microsoft не использует. В проектах Microsoft Consulting Services применяется гибридная методология MSF и Agile. Несмотря на внешние существенные различия прикладных вариантов MSF, разработанных экспертами Microsoft, база методов MSF для них остается общей и отражает общие методологические подходы к итеративному ведению проектов.

MOF призван обеспечить организации, создающие критически важные (mission-critical) IT решения на базе продуктов и технологий Майкрософт, техническим руководством по достижению их надежности (reliability), доступности (availability), удобства сопровождения (supportability) и управляемости (manageability). MOF затрагивает вопросы, связанные с организацией персонала и процессов; технологиями и менеджментом в условиях сложных (complex), распределенных (distributed) и разнородных (heterogeneous) IT-сред. MOF основан на лучших производственных методиках, собранных в IT Infrastructure Library (ITIL), составленной Central Computer and Telecommunications Agency – Агентством правительства Великобритании.

Создание бизнес-решения в рамках отведенных времени и бюджета требует наличия испытанной методологической основы. MSF предлагает проверенные методики для планирования, проектирования, разработки и внедрения успешных IT-решений. Благодаря своей гибкости, масштабируемости и отсутствию жестких инструкций MSF способен удовлетворить нужды организации или проектной группы любого размера. Методология MSF состоит из принципов, моделей и дисциплин по управлению персоналом, процессами, технологическими элементами и связанными со всеми этими факторами вопросами, характерными для большинства проектов. MSF состоит из двух моделей и трех дисциплин. Они подробно описаны в 5 whitepapers. Начинать изучение MSF лучше с моделей (модель проектной группы, модель процессов), а затем перейти к дисциплинам (дисциплина управление проектами, дисциплина управление рисками, дисциплина управление подготовкой).

Модель процессов MSF (MSF process model) представляет общую методологию разработки и внедрения IT-решений. Особенность этой модели состоит в том, что благодаря своей гибкости и отсутствию жестко навязываемых процедур она может быть применена при разработке весьма широкого круга IT-проектов. Эта модель сочетает в себе свойства двух стандартных производственных моделей: каскадной (waterfall) и спиральной (spiral). Модель процессов в MSF 3.0 была дополнена еще одним инновационным аспектом: она покрывает весь жизненный цикл создания решения, начиная с его отправной точки и заканчивая непосредственно внедрением. Такой подход помогает проектным группам сфокусировать свое внимание на бизнесотдаче (business value) решения, поскольку эта отдача становится реальной лишь после завершения внедрения и начала использования продукта.

Процесс MSF ориентирован на "вехи" (milestones) – ключевые точки проекта, характеризующие достижение в его рамках какого-либо существенного (промежуточного либо конечного) результата. Этот результат может быть оценен и проанализирован, что подразумевает ответы на вопросы: "Пришла ли проектная группа к однозначному пониманию целей и рамок проекта?", "В достаточной ли степени готов план действий?", "Соответствует ли продукт утвержденной спецификации?", "Удовлетворяет ли решение нужды заказчика?" и т. д.

Модель процессов MSF учитывает постоянные изменения проектных требований. Она исходит из того, что разработка решения должна состоять из коротких циклов, создающих поступательное движение от простейших версий решения к его окончательному виду.

Особенностями модели процессов MSF являются:

  • подход, основанный на фазах и вехах;
  • итеративный подход;
  • интегрированный подход к созданию и внедрению решений.

Модель процессов включает такие основные фазы процесса разработки, как:

  • выработка концепции (Envisioning);
  • планирование (Planning);
  • разработка (Developing);
  • стабилизация (Stabilizing);
  • внедрение (Deploying).

Кроме этого, существует большое количество промежуточных вех, которые показывают достижение в ходе проекта определенного прогресса и расчленяют большие сегменты работы на меньшие, обозримые участки. Для каждой фазы модели процессов MSF определяет:

  • что (какие артефакты) является результатом этой фазы;
  • над чем работает каждый из ролевых кластеров на этой фазе.

В рамках MSF программный код, документация, дизайн, планы и другие рабочие материалы создаются, как правило, итеративными методами. MSF рекомендует начинать разработку решения с построения, тестирования и внедрения его базовой функциональности. Затем к решению добавляются все новые и новые возможности. Такая стратегия именуется стратегией версионирования. Несмотря на то, что для малых проектов может быть достаточным выпуск одной версии, рекомендуется не упускать возможности создания для одного решения ряда версий. С созданием новых версий эволюционирует функциональность решения.

Итеративный подход к процессу разработки требует использования гибкого способа ведения документации. "Живые" документы (living documents) должны изменяться по мере эволюции проекта вместе с изменениями требований к конечному продукту. В рамках MSF предлагается ряд шаблонов стандартных документов, которые являются артефактами каждой стадии разработки продукта и могут быть использованы для планирования и контроля процесса разработки.

Решение не представляет бизнес-ценности, пока оно не внедрено. Именно по этой причине модель процессов MSF содержит весь жизненный цикл создания решения, включая его внедрение – вплоть до момента, когда решение начинает давать отдачу.

Федеральным агентством по техническому регулированию и метрологии РФ 01.03.2012 г. взамен ГОСТ Р ИСО/МЭК 12207-99 принят стандарт ГОСТ Р ИСО/МЭК 12207-2010 «Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств», идентичный международному стандарту ISO/IEC 12207:2008 «System and software engineering - Software life cycle processes».

Данный стандарт, используя устоявшуюся терминологию, устанавливает общую структуру процессов жизненного цикла программных средств, на которую можно ориентироваться в программной индустрии. Стандарт определяет процессы , виды деятельности и задачи, которые используются при приобретении программного продукта или услуги, а также при поставке, разработке, применении по назначению, сопровождении и прекращении применения программных продуктов.

Процессы жизненного цикла ПО

Стандарт группирует различные виды деятельности, которые могут выполняться в течение жизненного цикла программных систем, в семь групп процессов. Каждый из процессов жизненного цикла в пределах этих групп описывается в терминах цели и желаемых выходов, списков действий и задач, которые необходимо выполнять для достижения этих результатов.

  • процессы соглашения - два процесса;
  • процессы организационного обеспечения проекта - пять процессов;
  • процессы проекта - семь процессов;
  • технические процессы - одиннадцать процессов;
  • процессы реализации программных средств - семь процессов;
  • процессы поддержки программных средств - восемь процессов;
  • процессы повторного применения программных средств - три процесса.
  • Основные:
    • Приобретение (действия и задачи заказчика, приобретающего ПО)
    • Поставка (действия и задачи поставщика, который снабжает заказчика программным продуктом или услугой)
    • Разработка (действия и задачи, выполняемые разработчиком: создание ПО, оформление проектной и эксплуатационной документации, подготовка тестовых и учебных материалов и т. д.)
    • Эксплуатация (действия и задачи оператора - организации, эксплуатирующей систему)
    • Сопровождение (действия и задачи, выполняемые сопровождающей организацией, то есть службой сопровождения). Сопровождение - внесений изменений в ПО в целях исправления ошибок, повышения производительности или адаптации к изменившимся условиям работы или требованиям.
  • Вспомогательные
    • Документирование (формализованное описание информации, созданной в течение ЖЦ ПО)
    • Управление конфигурацией (применение административных и технических процедур на всем протяжении ЖЦ ПО для определения состояния компонентов ПО, управления его модификациями).
    • Обеспечение качества (обеспечение гарантий того, что ИС и процессы её ЖЦ соответствуют заданным требованиям и утверждённым планам)
    • Верификация (определение того, что программные продукты, являющиеся результатами некоторого действия, полностью удовлетворяют требованиям или условиям, обусловленным предшествующими действиями)
    • Аттестация (определение полноты соответствия заданных требований и созданной системы их конкретному функциональному назначению)
    • Совместная оценка (оценка состояния работ по проекту: контроль планирования и управления ресурсами, персоналом, аппаратурой, инструментальными средствами)
    • Аудит (определение соответствия требованиям, планам и условиям договора)
    • Разрешение проблем (анализ и решение проблем, независимо от их происхождения или источника, которые обнаружены в ходе разработки, эксплуатации, сопровождения или других процессов)
  • Организационные
    • Управление (действия и задачи, которые могут выполняться любой стороной, управляющей своими процессами)
    • Создание инфраструктуры (выбор и сопровождение технологии, стандартов и инструментальных средств, выбор и установка аппаратных и программных средств, используемых для разработки, эксплуатации или сопровождения ПО)
    • Усовершенствование (оценка, измерение, контроль и усовершенствование процессов ЖЦ)
    • Обучение (первоначальное обучение и последующее постоянное повышение квалификации персонала)

Каждый процесс включает ряд действий. Например, процесс приобретения охватывает следующие действия:

  1. Инициирование приобретения
  2. Подготовка заявочных предложений
  3. Подготовка и корректировка договора
  4. Надзор за деятельностью поставщика
  5. Приёмка и завершение работ

Каждое действие включает ряд задач. Например, подготовка заявочных предложений должна предусматривать:

  1. Формирование требований к системе
  2. Формирование списка программных продуктов
  3. Установление условий и соглашений
  4. Описание технических ограничений (среда функционирования системы и т. д.)

Стадии жизненного цикла ПО, взаимосвязь между процессами и стадиями

Модель жизненного цикла ПО - структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач на протяжении жизненного цикла. Модель жизненного цикла зависит от специфики, масштаба и сложности проекта и специфики условий, в которых система создается и функционирует.

Стандарт ГОСТ Р ИСО/МЭК 12207-2010 не предлагает конкретную модель жизненного цикла. Его положения являются общими для любых моделей жизненного цикла, методов и технологий создания ИС. Он описывает структуру процессов жизненного цикла, не конкретизируя, как реализовать или выполнить действия и задачи, включенные в эти процессы.

Модель ЖЦ ПО включает в себя:

  1. Стадии;
  2. Результаты выполнения работ на каждой стадии;
  3. Ключевые события - точки завершения работ и принятия решений.

Жизненный цикл ПО. Стадии и этапы

Жизненный цикл ИС - ряд событий, происходящих с системой в процессе ее создания и использования.

Стадия - часть процесса создания ПО, ограниченная определенными временными рамками и заканчивающаяся выпуском конкретного продукта (моделей, программных компонентов, документации), определяемого заданными для данной стадии требованиями.

Жизненный цикл традиционно моделируется в виде некоторого числа последовательных этапов (или стадий, фаз). В настоящее время не выработано общепринятого разбиения жизненного цикла программной системы на этапы. Иногда этап выделяется как отдельный пункт, иногда - входит в качестве составной части в более крупный этап. Могут варьироваться действия, производимые на том или ином этапе. Нет единообразия и в названиях этих этапов.

Традиционно выделяются следующие основные этапы ЖЦ ПО:

Анализ требований,

Проектирование,

Кодирование (программирование),

Тестирование и отладка,

Эксплуатация и сопровождение.

Жизненный цикл ПО. Каскадная модель

каскадная модель (70-80г.г.) ≈ предполагает переход на следующий этап после полного окончания работ по предыдущему этапу,

Основным достижением каскадной модели является завершенность стадий. Это дает возможность планирования затрат и сроков. Кроме того, формируется проектная документация, обладающая полнотой и согласованностью.

Каскадная модель применима к небольшим программным проектам, с четко поставленными и не изменяемыми требованиями. Реальный процесс может выявить неудачи на любой стадии, что приводит к откату на одну из предыдущих стадий. Модель такого производства ПО – каскадно-возвратная

Жизненный цикл ПО. Поэтапная модель с промежуточным контролем

поэтапная модель с промежуточным контролем (80-85г.г.) ≈ итерационная модель разработки ПО с циклами обратной связи между этапами. Преимущество такой модели заключается в том, что межэтапные корректировки обеспечивают меньшую трудоемкость по сравнению с каскадной моделью; однако, время жизни каждого из этапов растягивается на весь период разработки,

Основные этапы решения задач

Целью программирования является описание процессов обработки данных (в дальнейшем - просто процессов).

Данные (data) - это представление фактов и идей в формализованном виде, пригодном для передачи и переработке в некоем процессе, а информация (information) - это смысл, который придается данным при их представлении.

Обработка данных (data processing) - это выполнение систематической последовательности действий с данными. Данные представляются и хранятся на носителях данных.

Совокупность носителей данных, используемых при какой-либо обработке данных называется информационной средой (data medium).

Набор данных, содержащихся в какой-либо момент в информационной среде - состояние информационной среды.

Процесс можно определить как последовательность сменяющих друг друга состояний некоторой информационной среды.

Описать процесс - значит определить последовательность состояний информационной среды. Чтобы по заданному описанию требуемый процесс порождался автоматически на каком-либо компьютере, необходимо, чтобы это описание было формализованным.

Критерии качества ПО

Коммерческое изделие (продукт, услуга) должны удовлетворять требованиям потребителя.

Качество – объективная характеристика товара (продукции, услуги), показывающая степень удовлетворенности потребителя

Характеристики качества:

› Работоспособность – система работает и реализует требуемые функции.

› Надежность – система работает без отказов и сбоев.

› Восстанавливаемость .

› Эффективность – система реализует свои функции наилучшим образом.

› Экономическая эффективность минимальная стоимость конечного продукта при максимальной прибыли.

Характеристики качества:

› Учет человеческого фактора - удобство эксплуатации, быстрота обучения работе с ПП, удобство сопровождения, внесения изменений.

› Переносимость (мобильность) – переносимость кода на другую платформу или систему.

› Функциональная полнота – возможно наиболее полная реализация внешних функций.

› Точность вычисления

Свойства алгоритма.

Результативность означает возможность получения результата после выполнения конечного количества операций.

Определенность состоит в совпадении получаемых результатов независимо от пользователя и применяемых технических средств.

Массовость заключается в возможности применения алгоритма к целому классу однотипных задач, различающихся конкретными значениями исходных данных.

Дискретность - возможность расчленения процесса вычислений, предписанных алгоритмом, на отдельные этапы, возможность выделения участков программы с определенной структурой.

Способы описания алгоритмов

Существуют следующие способы описания (представления) алгоритмов:

1. словесное описание;

2. описание алгоритма с помощью математических формул;

3. графическое описание алгоритма в виде блок-схемы;

4. описание алгоритма с помощью псевдокода;

5. комбинированный способ изображения алгоритма с использованием словесного, графического и др. способов.

6. с помощью сетей Петри.

Словесное описание алгоритма представляет собой описание структуры алгоритма на естественном языке. Например, к приборам бытовой техники, как правило, прилагается инструкция по эксплуатации, т.е. словесное описание алгоритма, в соответствии с которым данный прибор должен использоваться.

Графическое описание алгоритма в виде блок-схемы – это описание структуры алгоритма с помощью геометрических фигур с линиями связи.

Блок схема алгоритма – это графическое представление метода решения задачи, в котором используются специальные символы для отображения операций.

Символы, из которых состоит блок-схема алгоритма, определяет ГОСТ 19.701-90. Этот ГОСТ соответствует международному стандарту оформления алгоритмов, поэтому блок-схемы алгоритмов, оформленные согласно ГОСТ 19.701-90, в разных странах понимаются однозначно.

Псевдокод – описание структуры алгоритма на естественном, но частично формализованном языке. В псевдокоде используются некоторые формальные конструкции и общепринятая математическая символика. Строгих синтаксических правил для записи псевдокода не предусмотрено.

Рассмотрим простейший пример. Пусть необходимо описать алгоритм вывода на экран монитора наибольшего значения из двух чисел.


Рисунок 1 - Пример описания алгоритма в виде блок-схемы

Описание этого же алгоритма на псевдокоде:

2. Ввод чисел: Z, X

3. Если Z > X то Вывод Z

4. Иначе вывод Х

Каждый из перечисленных способов изображения алгоритмов имеет и достоинства и недостатки. Например, словесный способ отличается многословностью и отсутствием наглядности, но дает возможность лучше описать отдельные операции. Графический способ более наглядный, но часто возникает необходимость описать некоторые операции в словесной форме. Поэтому при разработке сложных алгоритмов лучше использовать комбинированный способ.

Виды алгоритмов

линейные;

ветвящиеся;

циклические.

· Линейный алгоритм - набор команд (указаний), выполняемых последовательно друг за другом.

· Разветвляющийся алгоритм - алгоритм, содержащий хотя бы одно условие, в результате проверки которого ЭВМ обеспечивает переход на один из двух возможных шагов.

· Циклический алгоритм - алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) Над новыми исходными данными. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов. Цикл программы - последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторому условию.

Си.Типы данных.

Тип данных – это описание диапазона значений, которые может принимать переменная, указанного типа. Каждый тип данных характеризуется:
  1. количеством занимаемых байт(размером)
  2. диапазоном значений которые может принимать переменная данного типа.

Все типы данных можно разделить на следующие виды:
  1. простые (скалярные) и сложные (векторные) типы;
  2. базовые (системные) и пользовательские(которые определил пользователь).
 В языке СИ систему базовых типов образуют четыре типа данных:
  1. символьный,
  2. целочисленный,
  3. вещественный одинарной точности,
  4. вещественный двойной точности.

Структура программы на Си.

1. Операторы языка C++

Операторы управляют процессом выполнения программы. Набор операторов языка С++ содержит все управляющие конструкции структурного программирования.
Составной оператор ограничивается фигурными скобками. Все другие операторы заканчиваются точкой с запятой.
Пустой оператор – ;
Пустой оператор – это оператор, состоящий только из точки с запятой. Он может появиться в любом месте программы, где по синтаксису требуется оператор. Выполнение пустого оператора не меняет состояния программы.
Составной оператор – {...}
Действие составного оператора состоит в последовательном выполнении содержащихся в нем операторов, за исключением тех случаев, когда какой-либо оператор явно передает управление в другое место программы.
Оператор обработки исключений

try { <операторы> }
catch (<объявление исключения>) { <операторы> }
catch (<объявление исключения>) { <операторы> }
...
catch (<объявление исключения>) { <операторы> }

Условный оператор

if (<выражение>) <оператор 1>

Оператор-переключатель

switch (<выражение>)
{ case <константное выражение 1>: <операторы 1>
case <константное выражение 2>: <операторы 2>
...
case <константное выражение N>: <операторы N>
}
Оператор-переключатель предназначен для выбора одного из нескольких альтернативных путей выполнения программы. Вычисление оператора-переключателя начинается с вычисления выражения, после чего управление передается оператору, помеченному константным выражением, равным вычисленному значению выражения. Выход из оператора-переключателя осуществляется оператором break. Если значение выражения не равно ни одному константному выражению, то управление передается оператору, помеченному ключевым словом default, если он есть.
Оператор цикла с предусловием

while (<выражение>) <оператор>

Оператор цикла с постусловием

do <оператор> while <выражение>;
В языке C++ этот оператор отличается от классической реализации цикла с постусловием тем, что при истинности выражения происходит продолжение работы цикла, а не выход из цикла.
Оператор пошагового цикла

for ([<начальное выражение>];
[<условное выражение>];
[<выражение приращения>])
<оператор>
Тело оператора for выполняется до тех пор, пока условное выражение не станет ложным (равным 0). Начальное выражение и выражение приращения обычно используются для инициализации и модификации параметров цикла и других значений. Начальное выражение вычисляется один раз до первой проверки условного выражения, а выражение приращения вычисляется после каждого выполнения оператора. Любое из трех выражений заголовка цикла, и даже все три могут быть опущены (не забывайте только оставлять точки с запятой). Если опущено условное выражение, то оно считается истинным, и цикл становится бесконечным.
Оператор пошагового цикла в языке С++ является гибкой и удобной конструкцией, поэтому оператор цикла с предусловием while используется в языке С++ крайне редко, т.к. в большинстве случаев удобнее пользоваться оператором for.
Оператор разрыва

break;
Оператор разрыва прерывает выполнение операторов while, do, for и switch. Он может содержаться только в теле этих операторов. Управление передается оператору программы, следующему за прерванным. Если оператор разрыва записан внутри вложенных операторов while, do, for, switch, то он завершает только непосредственно охватывающий его оператор.
Оператор продолжения

continue;
Оператор продолжения передает управление на следующую итерацию в операторах цикла while, do, for. Он может содержаться только в теле этих операторов. В операторах do и while следующая итерация начинается с вычисления условного выражения. В операторе for следующая итерация начинается с вычисления выражения приращения, а затем происходит вычисление условного выражения.
Оператор возврата

return [<выражение>];
Оператора возврата заканчивает выполнение функции, в которой он содержится, и возвращает управление в вызывающую функцию. Управление передается в точку вызывающей функции

If (логическое выражение)

оператор;

If (логическое выражение)

оператор_1;

оператор_2;

<логическое выражение> ? <выражение_1> : <выражение_2>;

Если значение логического выражения истинно, то вычисляется выражение_1, в противном случае вычисляется выражение_2.

switch (выражение целого типа)

case значение_1:

последовательность_операторов_1;

case значение_2:

последовательность_операторов_2;

case значение_n:

последовательность_операторов_n;

default:

последовательность_операторов_n+1;

Ветку default можно не описывать. Она выполняется, если ни одно из вышестоящих выражений не удовлетворено.

Оператор цикла.

В Турбо Си имеются следующие конструкции, позволяющие программировать циклы: while, do while и for . Их структуру можно описать следующим образом:

Цикл с проверкой условия наверху:

Оператор выбора

Если действия, которые необходимо выполнить в программе, зависят от значения некоторой переменной, можно использовать оператор выбора. При этом в C++ в качестве переменных в операторе выбора можно использовать только численные. В общем виде запись оператора выбора выглядит так:

switch(переменная)
{
case значение1:
действия1
break;

case значение2:
действия2
break;
...

default:
действия по умолчанию
}

Ключевое слово break необходимо добавлять в конец каждой ветви. Оно останавливает выполнение операции выбора. Если его не написать, после выполнения действий из одной ветви выбора продолжится выполнение действий из следующих ветвей. Однако иногда такое свойство выбора бывает полезным, например если необходимо выполнить одни и теже действия для различных значений переменной.

switch(переменная)
{
case значение1:
case значение2:
действия1
break;

case значение3:
действия2
break;
...
}

Пример использования выбора:

int n, x;
...
switch(n)
{
case 0:
break; //если n равна 0, то не выполняем никаких действий

case 1:
case 2:
case 3:
x = 3 * n; //если n равна 1, 2 или 3, то выполняем некоторые действия
break;

case 4:
x = n; //если n равна 4, то выполняем другие действия
break;

default:
x = 0; //при всех других значениях n выполняем действия по умолчанию
}

Си.Цикл: цикл с параметром

Общая форма записи

for (инициализация параметра; проверка условия окончания; коррекция параметра) {

блок операций;

for - параметрический цикл (цикл с фиксированным числом повторений). Для организации такого цикла необходимо осуществить три операции:

§ инициализация параметра - присваивание параметру цикла начального значения;

§ проверка условия окончания - сравнение величины параметра с некоторым граничным значением;

§ коррекция параметра - изменение значения параметра при каждом прохождении тела цикла.

Эти три операции записываются в скобках и разделяются точкой с запятой (;). Как правило, параметром цикла является целочисленная переменная.
Инициализация параметра осуществляется только один раз - когда цикл for начинает выполняться. Проверка условия окончания осуществляется перед каждым возможным выполнением тела цикла. Когда выражение становится ложным (равным нулю), цикл завершается. Коррекция параметра осуществляется в конце каждого выполнения тела цикла. Параметр может как увеличиваться, так и уменьшаться.

Пример

#include
int main() {

for(num = 1; num < 5; num++)

printf("num = %d\n",num);

Си. Цикл с предусловием

Общая форма записи

while(выражение) {

блок операций;
}

Если выражение истинно (не равно нулю), то выполняется блок операций, заключенный в фигурные скобки, затем выражение проверяется снова. Последовательность действий, состоящая из проверки и выполнения блока операций, повторяется до тех пор, пока выражение не станет ложным (равным нулю). При этом происходит выход из цикла, и производится выполнение операции, стоящей после оператора цикла.

Пример

int k=5;
int i=1;
int sum=0;
while(i <=k) {

При построении цикла while, в него необходимо включить конструкции, изменяющие величину проверяемого выражения так, чтобы в конце концов оно стало ложным (равным нулю). Иначе выполнение цикла будет осуществляться бесконечно (бесконечный цикл), например

блок операций;
}

while - цикл с предусловием, поэтому вполне возможно, что тело цикла не будет выполнено ни разу если в момент первой проверки проверяемое условие окажется ложным.

Си. Цикл с постусловием

Цикл с постусловием do...while

Общая форма записи

блок операций;

} while(выражение);

Цикл с постусловием

Цикл do...while - это цикл с постусловием, где истинность выражения проверяется после выполнения всех операций, включенных в блок, ограниченный фигурными скобками.Тело цикла выполняется до тех пор, пока выражение не станет ложным, то есть тело цикла с постусловием выполнится хотя бы один раз.

Использовать цикл do...while лучше использовать в тех случаях, когда должна быть выполнена хотя бы одна итерация, либо когда инициализация объектов, участвующих в проверке условия, происходит внутри тела цикла.

Пример . Ввести число от 0 до 10

#include
#include
int main() {

system("chcp 1251");

printf("Введите число от 0 до 10: ");

scanf("%d", &num);

} while((num < 0) || (num > 10));

printf("Вы ввели число %d", num);

getchar(); getchar();

Определение функций

Рассмотрим определение функции на примере функции sum.

В языках C и C++, функции не должны быть определены до момента их использования, но они должны быть ранее объявлены. Но даже после всего этого, в конце концов, эта функция должна быть определена. После этого прототип функции и ее определение связываются, и эта функция может быть использована.

Если функция ранее была объявлена, она должна быть определена с тем же возвращаемым значением и типами данных, в противном случае, будет создана новая, перегруженная функция. Заметьте, что имена параметров функции не должны быть одинаковыми.

по электротехнике). Этот стандарт определяет структуру ЖЦ, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания ПС.

В данном стандарте ПС (или программный продукт ) определяется как набор компьютерных программ, процедур и, возможно, связанной с ними документацией и данных. Процесс определяется как совокупность взаимосвязанных действий, преобразующих некоторые входные данные в выходные (Г. Майерс называет это трансляцией данных ). Каждый процесс характеризуется определенными задачами и методами их решения. В свою очередь , каждый процесс разделен на набор действий, а каждое действие – на набор задач. Каждый процесс, действие или задача инициируется и выполняется другим процессом по мере необходимости, причем не существует заранее определенных последовательностей выполнения (естественно, при сохранении связей по входным данным).

Следует отметить, что в Советском Союзе, а затем в России создание программного обеспечения ( ПО ) первоначально, в 70-е годы прошлого столетия, регламентировалось стандартами ГОСТ ЕСПД (Единой системы программной документации – серии ГОСТ 19.ХХХ), которые были ориентированы на класс относительно простых программ небольшого объема, создаваемых отдельными программистами. В настоящее время эти стандарты устарели концептуально и по форме, их сроки действия закончились и использование нецелесообразно.

Процессы создания автоматизированных систем ( АС ), в состав которых входит и ПО , регламентированы стандартами ГОСТ 34.601-90 "Информационная технология. Комплекс стандартов на автоматизированные системы. Стадии создания", ГОСТ 34.602-89 "Информационная технология. Комплекс стандартов на автоматизированные системы. Техническое задание на создание автоматизированной системы" и ГОСТ 34.603-92 "Информационная технология. Виды испытаний автоматизированных систем". Однако многие положения этих стандартов устарели, а другие отражены недостаточно, чтобы их можно было применять для серьезных проектов создания ПС. Поэтому в отечественных разработках целесообразно использовать современные международные стандарты.

В соответствии со стандартом ISO / IEC 12207 все процессы ЖЦ ПО разделены на три группы (рис.5.1).


Рис. 5.1.

В группах определено пять основных процессов: приобретение, поставка, разработка, эксплуатация и сопровождение. Восемь вспомогательных процессов обеспечивают выполнение основных процессов, а именно документирование , управление конфигурацией , обеспечение качества, верификация , аттестация , совместная оценка, аудит , разрешение проблем. Четыре организационных процесса обеспечивают управление, создание инфраструктуры, усовершенствование и обучение.

5.2. Основные процессы ЖЦ ПС

Процесс приобретения состоит из действий и задач заказчика, приобретающего ПС. Данный процесс охватывает следующие действия :

  1. инициирование приобретения;
  2. подготовку заявочных предложений;
  3. подготовку и корректировку договора;
  4. надзор за деятельностью поставщика;
  5. приемку и завершение работ.

Инициирование приобретения включает следующие задачи:

  1. определение заказчиком своих потребностей в приобретении, разработке или усовершенствовании системы, программных продуктов или услуг;
  2. принятие решения относительно приобретения, разработки или усовершенствования существующего ПО;
  3. проверку наличия необходимой документации, гарантий, сертификатов, лицензий и поддержки в случае приобретения программного продукта;
  4. подготовку и утверждение плана приобретения, включающего требования к системе, тип договора, ответственность сторон и т.д.

Заявочные предложения должны содержать:

  1. требования, предъявляемые к системе;
  2. перечень программных продуктов;
  3. условия приобретения и соглашения;
  4. технические ограничения (например, по среде функционирования системы).

Заявочные предложения направляются к выбранному поставщику или нескольким поставщикам в случае тендера. Поставщик – это организация, которая заключает договор с заказчиком на поставку системы, ПО или программной услуги на условиях, оговоренных в договоре.

Подготовка и корректировка договора включает следующие задачи:

  1. определение заказчиком процедуры выбора поставщика, включающей критерии оценки предложений возможных поставщиков;
  2. выбор конкретного поставщика на основе анализа предложений;
  3. подготовку и заключение договора с поставщиком ;
  4. внесение изменений (при необходимости) в договор в процессе его выполнения.

Надзор за деятельностью поставщика осуществляется в соответствии с действиями, предусмотренными в процессах совместной оценки и аудита. В процессе приемки подготавливаются и выполняются необходимые тесты. Завершение работ по договору осуществляется в случае удовлетворения всех условий приемки.

Процесс поставки охватывает действия и задачи, выполняемые поставщиком, который снабжает заказчика программным продуктом или услугой. Данный процесс включает следующие действия:

  1. инициирование поставки;
  2. подготовку ответа на заявочные предложения;
  3. подготовку договора;
  4. планирование работ по договору;
  5. выполнение и контроль договорных работ и их оценку;
  6. поставку и завершение работ.

Инициирование поставки заключается в рассмотрении поставщиком заявочных предложений и принятии решения, соглашаться ли с выставленными требованиями и условиями или предложить свои (согласовать). Планирование включает следующие задачи:

  1. принятие решения поставщиком относительно выполнения работ своими силами или с привлечением субподрядчика;
  2. разработку поставщиком плана управления проектом, содержащего организационную структуру проекта, разграничение ответственности, технические требования к среде разработки и ресурсам, управление субподрядчиками и др.

Процесс разработки предусматривает действия и задачи, выполняемые разработчиком, и охватывает работы по созданию ПО и его компонентов в соответствии с заданными требованиями. Сюда включается оформление проектной и эксплуатационной документации, подготовка материалов, необходимых для проверки работоспособности, и качества программных продуктов , материалов, необходимых для организации обучения персонала и др.

Процесс разработки включает следующие действия:

  1. подготовительную работу;
  2. анализ требований, предъявляемых к системе;
  3. проектирование архитектуры системы;
  4. анализ требований, предъявляемых к программному обеспечению;
  5. проектирование архитектуры программного обеспечения;
  6. детальное проектирование программного обеспечения;
  7. кодирование и тестирование программного обеспечения;
  8. интеграцию программного обеспечения;
  9. квалификационное тестирование программного обеспечения;
  10. интеграцию системы;
  11. квалификационное тестирование системы;
  12. установку программного обеспечения;
  13. приемку программного обеспечения.

Подготовительная работа начинается с выбора модели ЖЦ ПО , соответствующей масштабу, значимости и сложности проекта. Действия и задачи процесса разработки должны соответствовать выбранной модели. Разработчик должен выбирать, адаптировать к условиям проекта и использовать согласованные с заказчиком стандарты, методы и средства разработки , а также составить план выполнения работ .

Анализ требований, предъявляемых к системе, подразумевает определение ее функциональных возможностей, пользовательских требований , требований к надежности, безопасности, требований к внешним интерфейсам, производительности и т.д. Требования к системе оцениваются, исходя из критериев реализуемости и возможности проверки при тестировании.

Проектирование архитектуры системы заключается в определении компонентов ее оборудования (аппаратуры), программного обеспечения и операций, выполняемых эксплуатирующим систему персоналом. Архитектура системы должна соответствовать требованиям, предъявляемым к системе, а также принятым проектным стандартам и методам.

Анализ требований к программному обеспечению предполагает определение следующих характеристик для каждого компонента ПО :

  1. функциональных возможностей, включая характеристики производительности и среды функционирования компонента;
  2. внешних интерфейсов;
  3. спецификаций надежности и безопасности;
  4. эргономических требований;
  5. требований к используемым данным;
  6. требований к установке и приемке;
  7. требований к пользовательской документации;
  8. требований к эксплуатации и сопровождению.

Требования к программному обеспечению оцениваются, исходя из критериев соответствия требованиям, предъявляемым к системе в целом, реализуемости и возможности проверки при тестировании.

Проектирование архитектуры ПО включает следующие задачи для каждого компонента ПО :

  1. трансформацию требований к ПО в архитектуру, определяющую на высоком уровне структуру ПО и состав его компонентов;
  2. разработку и документирование программных интерфейсов ПО и баз данных (БД);
  3. разработку предварительной версии пользовательской документации;
  4. разработку и документирование предварительных требований к тестам и плана интеграции ПО.

Детальное проектирование ПО включает следующие задачи:

  1. описание компонентов ПО и интерфейсов между ними на более низком уровне, достаточном для последующего кодирования и тестирования;
  2. разработку и документирование детального проекта базы данных;
  3. обновление (при необходимости) пользовательской документации;
  4. разработку и документирование требований к тестам и плана тестирования компонентов ПО;

Кодирование и тестирование ПО включает следующие задачи:

  1. кодирование и документирование каждого компонента ПО и базы данных, а также подготовку совокупности тестовых процедур и данных для их тестирования;
  2. тестирование каждого компонента ПО и БД на соответствие предъявляемым к ним требованиям с последующим документированием результатов тестирования;
  3. обновление документации (при необходимости);
  4. обновление плана интеграции ПО.

Интеграция ПО предусматривает сборку разработанных компонентов ПО в соответствии с планом интеграции и тестирования агрегированных компонентов. Для каждого из агрегированных компонентов разрабатываются наборы тестов и тестовые процедуры, предназначенные для проверки каждого из квалификационных требований при последующем квалификационном тестировании. Квалификационное требование – это набор критериев или условий, которые необходимо выполнить, чтобы квалифицировать программный продукт как соответствующий своим спецификациям и готовый к использованию в условиях эксплуатации.

Квалификационное тестирование ПО проводится разработчиком в присутствии заказчика (

Процесс эксплуатации охватывает действия и задачи организации оператора, эксплуатирующего систему. Процесс эксплуатации включает следующие действия.

  1. Подготовительная работа, которая включает проведение оператором следующих задач:

    1. планирование действий и работ, выполняемых в процессе эксплуатации, и установка эксплуатационных стандартов;
    2. определение процедур локализации и разрешения проблем, возникающих в процессе эксплуатации.
  2. Эксплуатационное тестирование, осуществляемое для каждой очередной редакции программного продукта, после чего эта редакция передается в эксплуатацию.
  3. Собственно эксплуатация системы, которая выполняется в предназначенной для этого среде в соответствии с пользовательской документацией.
  4. анализ проблем и запросов на модификацию ПО (анализ сообщений о возникшей проблеме или запроса на модификацию, оценка масштаба, стоимости модификации, получаемого эффекта, оценка целесообразности модификации);
  5. модификацию ПО (внесение изменений в компоненты программного продукта и документацию в соответствии с правилами процесса разработки);
  6. проверку и приемку (в части целостности модифицируемой системы);
  7. перенос ПО в другую среду (конвертирование программ и данных, параллельная эксплуатация ПО в старой и новой среде в течение некоторого периода времени);
  8. снятие ПО с эксплуатации по решению заказчика при участии эксплуатирующей организации, службы сопровождения и пользователей. При этом программные продукты и документации подлежат архивированию в соответствии с договором.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш бизнес - От идеи до реализации