Ваш бизнес - От идеи до реализации

Фотографии

яся фогельгардт

Группа компаний «Вартон» выпускает светодиодные светильники под брендами Gauss и Varton. Их устанавливают в офисах, жилых домах, на складах и улицах - всего компания делает тысячу видов разной осветительной техники. Производство и лаборатория находятся в трёх часах езды от Москвы в городе Богородицке Тульской области. The Village съездил туда и узнал, как делают офисное светодиодное освещение.

Производство

Перед зданием яркого цвета нас встречает Илья Сивцев, генеральный директор компании. В строении несколько этажей, и мы поднимаемся на самый верхний, где находятся кабинеты руководителей и шоу-рум. В нём на всех стеллажах лежат разные светильники. В целом самые распространённые лампы для освещения бывают четырёх видов: лампы накаливания, люминесцентные, галогенные лампы и светодиодные светильники. Завод «Вартон» специализируется на последних.

Сами лампочки, светодиодные модули и другие важные составляющие здесь не производят, а закупают их в Китае, Корее, Финляндии и Австрии. «Чем дальше ты уходишь внутрь, тем ты более медленный и неэффективный», - поясняет Илья. Все эти предприятия собирают лампочку из нескольких элементов: базы (пластиковая деталь, внутри которой - алюминий), цоколя и светодиодного модуля и, наконец, драйвера, который отвечает за свечение. Сверху на эту конструкцию одевается рассеивающий элемент (чаще всего из пластика). Поэтому здесь делают корпуса для ламп, рассеиватели, собирают всё вместе и отгружают поставщикам. Ещё здесь есть лаборатория, на которой тестируются разные лампы и светильники.

Научно-производственный центр «Вартон»

производство светодиодных светильников

РАСПОЛОЖЕНИЕ:
Богородицк, Тульская область

ДАТА ОТКРЫТИЯ: 2012 год

СОТРУДНИКИ: 500 человек в компании (250 из них - на заводе)

ПЛОЩАДЬ ЗАВОДА: 20 000 кв. км

varton.ru

Технология

Идея светодиодной технологии в том, что от светодиода выделяется тепло. Светодиод маленький, и он выделяет много света и, как следствие, тепла. Последнее приходится нейтрализовывать с помощью алюминиевых пластин. Например, температура, которая исходит от светодиода, - 80 градусов, она идёт на теплоотвод и в итоге снижается до 45 градусов, исходящих от лампы. В среднем светодиодный светильник служит 50 тысяч часов. «Вообще, в самом светодиоде проблем никаких нет, - объясняет Илья Сивцев. - Если правильным образом всё выведено, 100 тысяч часов может отработать». Проблема кроется в блоке питания, который чаще всего первым выходит из строя.

Производство корпусов

Весь процесс начинается с производства металлических корпусов для светильников. Металл поступает в огромных рулонах, самый тяжёлый из которых может весить 4,5 тонны. Затем такую катушку поднимают на кран-балке и переносят на размотчик. Главная его цель - медленно разматывать полотно металла и подавать его на автоматическую линию, первая операция которой - правка. С помощью аппарата, который напоминает устройство для отжима белья на старых стиральных машинах, листы металла делают абсолютно ровными, плюс установка ориентирует поток, чтобы он правильно вошёл на следующую станцию.

А дальше в металле автоматически вырубаются все нужные отверстия автоматическим штампом. После этого гильотина резко, с шумом отрезает кусок рулона нужной длины, и он едет на станцию гибки, где машина загибает длинные бортики будущего корпуса, складывает их как конверт. Робот берёт эту конструкцию и переворачивает, чтобы уже другая машина загнула торцы корпуса: это называется «станция подгиба язычков». Линия завершается клинчингом - так называется метод крепления металла с металлом без сварки и лишних заклёпок и болтов. Получается такой зацеп, который сам себя держит. Так, каждые 17,3 cекунды каждый конвейер готовит новое изделие, сотрудник его забирает и складывает в высокие стопки, как в игре «Дженга».

Всё оборудование - в сенсорах: если готовый корпус не убрать с линии, то машина остановится и будет ждать до тех пор, пока изделие с него не снимут. Так делают массовые партии на двух линиях.

С эксклюзивными и пробными экземплярами приходится повозиться подольше: хоть процессы всё те же самые, но оборудование уже другое. «Аккуратно, он может ударить», - предостерегает нас Илья. Мы отходим на пару шагов от аппарата: платформа постоянно движется и может быстро разогнаться, поэтому на полу есть разметка, за которую заходить запрещено. На этой автоматической машине - координатно-пробивном прессе - в листах металла делают отверстия, а после несут на листогиб, который всё делает сам - сгибает, переворачивает, - стоит лишь выбрать нужную программу. Среди процессов есть и те, что нужно делать вручную; такая линия нужна заводу для эксклюзивных небольших серий.

Покраска

Готовые корпуса будущих светильников красят на оборудовании, похожем на карусель: на проволоку подвешивают корпуса на крючках, и они медленно едут от одной станции к другой. Начинается всё с мытья: специальный душ с химическим раствором удаляет масло с металла, затем корпуса попадают в сушилку, где при температуре 280 градусов вода с поверхности улетучивается. Остыв, они попадают в камеру порошковой покраски: там стоят автоматические пистолеты, которые перемещаются сверху вниз и покрывают корпус ровным слоем краски. Правда, в углы такая краска не попадает, поэтому в камере ещё работает сотрудник в специальном костюме и прокрашивает то, до чего не удалось дотянуться автоматическим пистолетам. Краска тяжёлая, и она будто сама прилипает к поверхности; если же этого не случилось, то напор воздуха внизу камеры всасывает её через отверстия в полу и снова подаёт на покраску. Затем краску нужно «запечь», поэтому детали отправляются в печь полимеризации. Размер камеры таков, что весь путь изделия от начала до конца занимает около 20 минут. Всё, корпус готов, теперь его можно снимать с крючка и отдавать на сборку.

Илья Сивцев рассказывает, что сборкой занимаются две бригады, в одной из которых преобладают мужчины, в другой - женщины. Первые берут на себя тяжёлую работу, предпочтительно в малых эксклюзивных сериях, а женщины, по его словам, хорошо справляются с поточной работой - там, где нужна скорость и чёткость. Суть одна и та же: в покрашенный корпус вставляют модули, драйвера, подключают драйвера к клеммной колодке, через которую попадает ток. В основном всё собирается вручную, иногда используется шуруповёрт.

Но от креплений вроде болтов и шурупов в компании стараются отказываться в пользу снэплоков: так детали можно цеплять к нему прямо на корпус. Во время сборки на каждом столе попеременно загораются светильники - сотрудницы проверяют работоспособность каждого изделия. Всё это делается вручную, потому что в ассортименте завода больше тысячи позиций, а автоматизировать такое количество изделий сложно. У сотрудников есть свои нормативы по сборке: например, дневной стандарт для одного сборщика - это 363 изделия. В целом завод стремится к тому, чтобы каждые восемь секунд выдавать готовое изделие.

Те модели, что собирают в смену, зависят от заказа: во время нашего посещения собирали медицинские (они герметичны), аварийные (продолжают работать ещё три часа после того, как отключили электричество) и поточные (для пополнения склада). На каждом светильнике должен быть рассеиватель, которых на заводе выпускают пять видов - например, «призма», «опал», «колотый лёд». Рассеиватели сборка не надевает на светильник, а только упаковывает, так как заказчик выбирает ту модель, которая ему нужна. Рассеиватели поступают на завод в виде крупных листов поликарбоната, которые нарезают на пласты нужного размера.

Некоторые корпуса светильников делают пластиковыми - такие модели обходятся дешевле, поэтому модель можно наверняка увидеть чуть ли не в каждом подъезде. Их производят в цехе, где стоят термопластавтоматы. Происходит это так: сверху в машину засыпают пластик в гранулах, который позже автомат плавит. Все детали рождаются в пресс-форме, состоящей из двух частей, и когда они смыкаются, подаётся горячая пластиковая масса при температуре 300 градусов. Форма открывается, а робот достаёт получившееся изделие наружу - всё это занимает 98 секунд. Потом рассеиватели сотрудник вручную разъединяет и чуть подравнивает место разлома.

На этом же заводе производят уличное освещение. «В разработке они сложнее, но производство их простое», - рассказывает Илья. Светильники готовят из огромных алюминиевых балок, длина которых может достигать шести метров. На специальном оборудовании балку под высокой температурой прогоняют через пресс, внутри которого есть форма - фильера, отвечающая за направление среза. Затем сотрудники в ней делают отверстия и режут на куски нужного размера с помощью циркулярного ножа.

Склад и лаборатория

Часть готовой продукции попадает на склад размером 3 500 квадратных метров. Всего на складе около 2 тысяч палето-мест. Рядом со складом находится лаборатория завода, где сотрудники проверяют продукцию на прочность и исследуют лампочки, которые закупают у поставщиков.

Первое, что бросается в глаза, когда заходишь в лабораторию, - огромный шар с открытыми створками. Это фотометрический шар, в котором производятся все измерения и проверяются технические характеристики светового прибора. В основном здесь тестируют лампочки: их вкручивают в центр, закрывают и считывают все нужные показатели.

Дальше у стены установлены стеллажи с включёнными лампами - это деградационные стенды. Свет от них такой яркий, что кажется, будто находишься в фотостудии на съёмке. Оказывается, все эти лампочки светят круглосуточно - так сотрудники лаборатории проверяют, насколько долго будет работать лампа и как эти показатели отличаются от заявленных. Плюс на протяжении всего срока службы работники снимают показания с каждой лампы, отмечая, как они меняются с течением времени. Если сотрудники увидели, что через тысячу часов лампа села, то это знак, что нужно проверить всю партию ещё раз.

На этом испытания светильников не заканчиваются. Следующая машина позволяет проверить лампочку на пылезащищённость, её задача - посыпать объект пылью (эту роль играет тальк). Дальше идут климатические камеры, в которых можно установить разные температуры - как самые высокие, так и низкие - и посмотреть, как при них будет вести себя лампочка.

Площадка одного из тестов похожа на бассейн: и стены, и пол вымощены плиткой. Здесь проверяют, насколько светильник устойчив к воде. Один из тестов выглядит так: светильник закрепляют на специальной платформе, которая вращается, а в это время на неё из крана, похожего на пожарный, бьёт сильный поток воды (степень напора можно менять).

Но самое интересное в лаборатории - это отдельная комната, где стоит прибор, помогающий измерить кривую света (то, как будет светить лампа) и другие светотехнические параметры. Помещение большое (18 метров в длину и 6 в высоту), полностью чёрное: и стены, обитые бархатистым материалом, и потолок, и даже батареи здесь чёрные. На входе в комнату установлен столб с несколькими зеркалами и балкой, которая вращается, а наверху установлен прибор с тремя детекторами - один отвечает за цвет, и два - за свет. Испытания проходят в два этапа: в центре устанавливается светильник на специальной раме, и когда начинается тест, то рама эта вращается, штанга с детекторами вращается вокруг светильника и в разных плоскостях измеряет его.

Сегодня практически никто из нас не может и представить жизни без таких привычных для нас вещей как телевизор, телефон и прочее. К этой же категории следует отнести и свет, который производится при помощи лампочек. Изобретение первой лампочки датируется 1838 годом, а её автором был Жан Жобар. Данная лампа в качестве источника накаливания имела уголь, что по крупному счету не отличало её от газовых фонарей и ламп. Уже более усовершенствованная лампа была придумана через три года англичанином Деларю, который изобрел первую лампу накаливания, в которой использовалась спираль. Известным российским физиком Александром Николаевичем Лодыгиным ещё в 1874 году была изобретена отечественная лампа накаливания, в которой использовался угольный стержень в вакууме. Изобретение дало толчок к началу электрификации Российской империи. Специальный план по 100-процентной электрификации страны был представлен в 1913 году, однако, осуществить его будет суждено уже власти большевиков, которая выдаст план за чисто свою идею. Как бы там ни было, к лампочке мы за это время уже сильно привыкли, однако, некоторые вопросы так и остаются до сих пор открытыми, к примеру, – производство ламп накаливания.

Оборудование для производства ламп накаливания

Для производства ламп накаления требуется иметь достаточно современное и качественное оборудование. Главная трудность заключается в работе с газом и вакуумом. Кроме того, для производства вольфрамовой нити требуется специальная машина, которая производит нить с толщиной в 0,4 мкр. Более того, вольфрам – довольно дорогостоящий материал и затраты на этот металл не всегда окупаются одной лишь продажей лампочек. Далее, следует учитывать и производства стекла – колбы. Для этого тоже существуют специальные стеклодувные машины. Процесс создания лампы требует большой точности складывания лампочек. Если процесс выполняется неправильно на одном этапе (изготовления колбы, термального тела или цоколя), то есть все шансы, что такая лампочка не прослужит долго.


Таким образом, производство ламп является процессом, который вот уже более полутора века совершенствуется и упрощается. Сегодня мы имеем несколько видов ламп, в зависимости от их назначения. Совсем недавно в моду начали входить энергосберегающие лампочки, которые имеют более высокий КПД, а также долговечность. Кроме того, яркость такой лампочки в несколько раз превосходит яркость традиционной. Как бы там ни было, но лампа и до сих пор, несмотря на свою простоту, остается чуть ли не единственным изобретением, которое человечеству несет свет!

Технология производства ламп накаливания

Лампа накаления использует эффект нагревания проводника (тела накаливания) во время протекания через него электрического тока. Температура тела накала резко возрастает после включения тока. Во время работы, накаляемое тело излучает электромагнитное тепловое поле в соответствии с законом Планка. Формулировка Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн. Для того чтобы получить видимое излучение, необходимо, чтобы температура накаляемого была составляла несколько тысяч градусов. При температуре 5770 градусов световой эффект равен спектру Солнца. Чем меньше температура, тем меньше доля видимого света, и тем более “красным” кажется излучение.

В сегодняшнем производстве спиралей для ламп используется вольфрам, который впервые начал использовать наш ученный Лодыгин, о котором мы говорили несколько выше. В обычном воздухе при значительных температурах вольфрам мгновенно превратился бы в оксид. По этой причине тело накала помещено в колбу, из которой в процессе изготовления лампы откачивается воздух. Первые колбы изготавливали вакуумными; в настоящее время только лампочки малой мощности (для ламп общего назначения - до 25 Вт) изготавливают в вакуумированной колбе. Колба более мощной лампочки наполняется инертным газом (аргоном, криптоном или азотом). Повышенное давление в колбе газонаполненных ламп резко уменьшает скорость испарения вольфрама, благодаря чему не только увеличивается срок службы лампы, но и есть возможность повысить температуру тела накаливания, что позволяет повысить коэффициент полезного действия, а также приближает спектр излучения к белому. Газонаполненная лампочка не так быстро будет темнеть за счёт осаждения материала тела накала, в отличии от вакуумной лампы.

Видео как делают лампочки:

Для изготовления нити накаливания, необходимо использовать металл с положительным температурным коэффициентом сопротивления, который позволит только увеличивать сопротивление температуре с её ростом. Такая конструкция производит автоматическую стабилизацию мощности лампы на необходимом уровне при подключении к источнику напряжения (источнику с низким выходным сопротивлением). Это позволит проводить подключение ламп непосредственно к распределительной сети без использования балласта, что выгодно отличает их от газоразрядных лампочек.

Цветомузыка или просто освещение с необычным цветом - это интересное решение, которое может пригодиться в оформлении любой комнаты. Отыскать яркие лампочки на рынке и в магазинах довольно сложно, поэтому единственный выход - это создание цветных лампочек самостоятельно.

Привычные варианты покраски могут не подойти для придания цвета лампочки, так как она из-за нагревания сожжёт на себе нанесённый слой. Поэтому для работы рекомендуется выбирать светодиодные лампы, энергосберегающие, или лампы накаливания в 25 ватт. В работе над лампочкой необходимо помнить, что цвет яркость свечения будет зависеть от плотности цветного покрытия.

Используя различные красители, интенсивность покрытия и способы, описанные ниже можно за несколько минут создать богатую коллекцию различных лампочек с интересным свечением.

Окрашивание пастой

Чтобы окрасит ручку в синий цвет можно взять пасту из шариковой ручки. Чтобы окрасить лампу в цвет выбранной пасты понадобится аккуратно снять наконечник, выдуть чернила на лист бумаги или клеёнки. Затем, удерживая лампочку за цоколь, натереть её вытекшим содержимым ручки.
Контролировать интенсивность покрытия можно с помощью ацетона, одеколона или спирта.

Лак для ногтей

Быстросохнущие лаки - отличный краситель. Наносить лак удобно кисточкой или ватным диском. Огромное преимущество этого способа - широкий выбор оттенков.
Однако, лак выгорает при нагревании более 200 градусов, поэтому в использовании необходимо быть осторожнее.

ПВА

Клей ПВА универсален и схватывается на большинстве поверхностей. Сам он имеет белый мутный оттенок, но после высыхания становится прозрачным. Если смешать клей с водорастворимым красителем или пигментом из принтера, а затем покрыть им лампочку, то может получить вполне неплохой результат.

Автоэмаль

Актуальны способ для владельца авто: обычно автомобильная эмаль продаётся в аэрозольных баллонах. Способ нанесения оттенка очень простотой, покрытие выдерживает до 200 градусов.

Чтобы не получился слишком толстый слой, который затемнит лампочку, рекомендуется распылять содержимое аэрозоля на расстоянии 30–40 см от объекта.

Витражные краски

Идеальный вариант для создания цветной лампочки - витражные краски. Для работы с лампочкой понадобятся водорастворимые, под обжиг. Слой не сгорит при сильном нагреве, а только станет прочнее.

У этого способа есть весомый недостаток - это цена. Один маленький тюбик на 50 грамм одет обойтись покупателю в 150–200 р.

Кремний органика

Краски, предназначенные для окрашивания поверхностей, которые часто нагреваются. Они прочные и гарантированно не выгорят, даже если лампочка будет гореть постоянно. Верхняя граница диапазона — 600 градусов, поэтому опасаться за качество и срок службы не придётся.

Цапонлак

Приобрести это покрытие можно в магазине, специализирующемся на радиодеталях. основная функция покрытия - защита дорожек и паек от замыкания. Поскольку работящая температура транзисторов достигает 150 градусов, средство подойдёт и до покрытия лампочек.

Это самые простые и доступные способы покрыть довольно капризный материал - стекло. Выбор сужается в несколько раз, если вопрос касается лампочек, которые часто и долго горят, ведь не все красители выдерживают высокую температуру.

Разбирая строение лампы накаливания (рисунок 1, а ) мы обнаруживаем, что основной частью ее конструкции является тело накала 3 , которое под действием электрического тока накаливается вплоть до появления оптического излучения. На этом собственно и основан принцип действия лампы. Крепление тела накала внутри лампы осуществляется при помощи электродов 6 , обычно удерживающих его концы. Через электроды также осуществляется подвод электрического тока к телу накала, то есть они являются еще внутренними звеньями выводов. При недостаточной устойчивости тела накала, используют дополнительные держатели 4 . Держатели посредством впайки устанавливают на стеклянном стержне 5 , именуемым штабиком, который имеет утолщение на конце. Штабик сопряжен со сложной стеклянной деталью – ножкой. Ножка, она изображена на рисунке 1, б , состоит из электродов 6 , тарелочки 9 , и штенгеля 10 , представляющего собой полую трубочку через которую откачивается воздух из колбы лампы. Общее соединение между собой промежуточных выводов 8 , штабика, тарелочки и штенгеля образует лопатку 7 . Соединение производится путем расплавления стеклянных деталей, в процессе чего проделывается откачное отверстие 14 соединяющее внутреннюю полость откачной трубки с внутренней полостью колбы лампы. Для подвода электрического тока к нити накала через электроды 6 применяют промежуточные 8 и внешние выводы 11 , соединяемые между собой электросваркой.

Рисунок 1. Устройство электрической лампы накаливания (а ) и ее ножки (б )

Для изоляции тела накала, а также других частей лампочки от внешней среды, применяется стеклянная колба 1 . Воздух из внутренней полости колбы откачивается, а вместо него закачивается инертный газ или смесь газов 2 , после чего конец штенгеля нагревается и запаивается.

Для подвода к лампе электрического тока и ее крепления в электрическом патроне лампа оборудуется цоколем 13 , крепление которого к горлу колбы 1 осуществляется при помощи цоколевочной мастики. На соответствующие места цоколя припаивают выводы лампы 12 .

От того как расположено тело накала и какой оно формы зависит светораспределение лампы. Но касается это только ламп с прозрачными колбами. Если представить, что нить накала представляет собой равнояркий цилиндр и спроецировать исходящий от нее свет на плоскость перпендикулярную наибольшей поверхности светящей нити или спирали, то на ней окажется максимальная сила света. Поэтому для создания нужных направлений сил света, в различных конструкциях ламп, нитям накала придают определенную форму. Примеры форм нитей накала приведены на рисунке 2. Прямая неспирализированная нить в современных лампах накаливания почти не применяется. Связано это с тем, что с увеличением диаметра тела накала уменьшаются потери тепла через газ наполняющий лампу.

Рисунок 2. Конструкция тела накала:
а - высоковольтной проекционной лампы; б - низковольтной проекционной лампы; в - обеспечивающая получение равнояркого диска

Большое количество тел накала подразделяют на две группы. Первая группа включает в себя тела накала, применяемые в лампах общего назначения, конструкция которых изначально задумывалась как источник излучения с равномерным распределением силы света. Целью конструирования таких ламп является получение максимальной световой отдачи, что достигается путем уменьшения числа держателей, через которые происходит охлаждение нити. Ко второй группе относят так называемые плоские тела накала, которые выполняют либо в виде параллельно расположенных спиралей (в мощных высоковольтных лампах), либо в виде плоских спиралей (в маломощных лампах низкого напряжения). Первая конструкция выполняется с большим числом молибденовых держателей, которые крепятся специальными керамическими мостиками. Длинная нить накала размещается в виде корзиночки, тем самым достигается большая габаритная яркость. В лампах накаливания, предназначенных для оптических систем, тела накала должны быть компактными. Для этого тело накала свертывают в дужку, двойную или тройную спираль. На рисунке 3 приведены кривые силы света, создаваемые телами накала различных конструкций.

Рисунок 3. Кривые силы света ламп накаливания с различными телами накала:
а - в плоскости, перпендикулярной оси лампы; б - в плоскости, проходящей через ось лампы; 1 - кольцевая спираль; 2 - прямая биспираль; 3 - спираль, расположенная по поверхности цилиндра

Требуемые кривые силы света ламп накаливания можно получить применением специальных колб с отражающими или рассеивающими покрытиями. Использование отражающих покрытий на колбе соответствующей формы позволяет иметь значительное разнообразие кривых силы света. Лампы с отражающими покрытиями называют зеркальными (рисунок 4). При необходимости обеспечить особо точное светораспределение в зеркальных лампах применяют колбы, изготовленные методом прессования. Такие лампы называются лампами-фарами. В некоторых конструкциях ламп накаливания имеются встроенные в колбы металлические отражатели.

Рисунок 4. Зеркальные лампы накаливания

Применяемые в лампах накаливания материалы

Металлы

Основным элементом ламп накаливания является тело накала. Для изготовления тела накала наиболее целесообразно применять металлы и другие материалы с электронной проводимостью. При этом пропусканием электрического тока тело будет накаливаться до требуемой температуры. Материал тела накала должен удовлетворять ряду требований: иметь высокую температуру плавления, пластичность, позволяющую тянуть проволоку различного диаметра, в том числе весьма малого, низкую скорость испарения при рабочих температурах, обуславливающую получение высокого срока службы, и тому подобных. В таблице 1 приведены температуры плавления тугоплавких металлов. Наиболее тугоплавким металлом является вольфрам, что наряду с высокой пластичностью и низкой скоростью испарения обеспечило его широкое использование в качестве тела накала ламп накаливания.

Таблица 1

Температура плавления металлов и их соединений

Металлы T , °С Карбиды и их смеси T , °С Нитриды T , °С Бориды T , °С
Вольфрам
Рений
Тантал
Осмий
Молибден
Ниобий
Иридий
Цирконий
Платина
3410
3180
3014
3050
2620
2470
2410
1825
1769
4TaC +
+ HiC
4TaC +
+ ZrC
HfC
TaC
ZrC
NbC
TiC
WC
W2C
MoC
VnC
ScC
SiC
3927

3887
3877
3527
3427
3127
2867
2857
2687
2557
2377
2267

TaC +
+ TaN
HfN
TiC +
+ TiN
TaN
ZrN
TiN
BN
3373

3087
2977
2927
2727

HfB
ZrB
WB
3067
2987
2927

Скорость испарения вольфрама при температурах 2870 и 3270°С составляет 8,41×10 -10 и 9,95×10 -8 кг/(см²×с).

Из других материалов перспективным можно считать рений, температура плавления которого немного ниже, чем у вольфрама. Рений хорошо поддается механической обработке в нагретом состоянии, стоек к окислению, имеет меньшую скорость испарения, чем вольфрам. Имеются зарубежные публикации о получении ламп с вольфрамовой нитью с добавками рения, а также покрытия нити слоем рения. Из неметаллических соединений интерес представляет карбид тантала, скорость испарения которого на 20 - 30% ниже, чем у вольфрама. Препятствием к использованию карбидов, в частности карбида тантала, является их хрупкость.

В таблице 2 приведены основные физические свойства идеального тела накала, изготовленного из вольфрама.

Таблица 2

Основные физические свойства вольфрамовой нити

Температура, К Скорость испарения, кг/(м²×с) Удельное электрическое сопротивление, 10 -6 Ом×см Яркость кд/м² Световая отдача, лм/Вт Цветовая температура, К
1000
1400
1800
2200
2600
3000
3400
5,32 × 10 -35
2,51 × 10 -23
8,81 × 10 -17
1,24 × 10 -12
8,41 × 10 -10
9,95 × 10 -8
3,47 × 10 -6
24,93
37,19
50,05
63,48
77,49
92,04
107,02
0,0012
1,04
51,2
640
3640
13260
36000
0,0007
0,09
1,19
5,52
14,34
27,25
43,20
1005
1418
1823
2238
2660
3092
3522

Важным свойством вольфрама является возможность получения его сплавов. Детали из них сохраняют устойчивую форму при высокой температуре. При нагреве вольфрамовой проволоки, в процессе термической обработки тела накала и последующих нагревах происходит изменение ее внутренней структуры, называемое термической рекристаллизацией. В зависимости от характера рекристаллизации тело накала может иметь большую или меньшую формоустойчивость. Влияние на характер рекристаллизации оказывают примеси и присадки, добавляемые в вольфрам в процессе его изготовления.

Добавка к вольфраму окиси тория ThO 2 замедляет процесс его рекристаллизации и обеспечивает мелкокристаллическую структуру. Такой вольфрам является прочным при механических сотрясениях, однако он сильно провисает и поэтому не пригоден для изготовления тел накала в виде спиралей. Вольфрам с повышенным содержанием окиси тория используется для изготовления катодов газоразрядных ламп из-за его высокой эмиссионной способности.

Для изготовления спиралей применяют вольфрам с присадкой оксида кремния SiO 2 вместе со щелочными металлами - калием и натрием, а также вольфрам, содержащий, кроме указанных, присадку оксида алюминия Al 2 O 3 . Последний дает наилучшие результаты при изготовлении биспиралей.

Электроды большинства ламп накаливания выполняют из чистого никеля. Выбор обусловлен хорошими вакуумными свойствами этого металла, выделяющего сорбированные в нем газы, высокими токопроводящими свойствами и свариваемостью с вольфрамом и другими материалами. Ковкость никеля позволяет заменять сварку с вольфрамом обжатием, обеспечивающим хорошую электро- и теплопроводность. В вакуумных лампах накаливания вместо никеля используют медь.

Держатели изготавливают как правило, из молибденовой проволоки, сохраняющей упругость при высокой температуре. Это позволяет поддерживать тело накала в растянутом состоянии даже после его расширения в результате нагрева. Молибден имеет температуру плавления 2890 К и температурный коэффициент линейного расширения (ТКЛР), в интервале от 300 до 800 К равный 55 × 10 -7 К -1 . Из молибдена делают также вводы в тугоплавкие стекла.

Выводы ламп накаливания изготавливают из медной проволоки, которую приваривают торцевой сваркой к вводам. У ламп накаливания малой мощности отдельные выводы отсутствуют, их роль выполняют удлиненные вводы, изготовленные из платинита. Для припаивания выводов к цоколю применяют оловянно-свинцовый припой марки ПОС-40.

Стекла

Штабики, тарелочки, штенгели, колбы и другие стеклянные детали, применяемые в одной и той же лампе накаливания, изготовляют из силикатного стекла с одинаковым температурным коэффициентом линейного расширения, что необходимо для обеспечения герметичности мест сварки этих деталей. Значения температурного коэффициента линейного расширения ламповых стекол должны обеспечивать получение согласованных спаев с металлами, используемыми для изготовления вводов. Наибольшее распространение получило стекло марки СЛ96-1 со значением температурного коэффициента, равным 96 × 10 -7 К -1 . Это стекло может работать при температурах от 200 до 473 К.

Одним из важных параметров стекла является интервал температур, в пределах которого оно сохраняет свариваемость. Для обеспечения свариваемости некоторые детали изготовляют из стекла марки СЛ93-1, отличающегося от стекла марки СЛ96-1 химическим составом и более широким интервалом температур, в котором оно сохраняет свариваемость. Стекло марки СЛ93-1 отличается повышенным содержанием окиси свинца. При необходимости уменьшения размеров колб применяют более тугоплавкие стекла (например, марки СЛ40-1), температурный коэффициент которых составляет 40 × 10 -7 К -1 . Эти стекла могут работать при температурах от 200 до 523 К. Наиболее высокую рабочую температуру имеет кварцевое стекло марки СЛ5-1, лампы накаливания из которого могут работать при 1000 К и более в течение нескольких сотен часов (температурный коэффициент линейного расширения кварцевого стекла 5,4 × 10 -7 К -1). Стекла перечисленных марок прозрачны для оптического излучения в интервале длинн волн от 300 нм до 2,5 - 3 мкм. Пропускание кварцевого стекла начинается от 220 нм.

Вводы

Вводы изготовляют из материала, который наряду с хорошей электропроводностью должен иметь тепловой коэффициент линейного расширения, обеспечивающий получение согласованных спаев с применяемыми для изготовления ламп накаливания стеклами. Согласованными называют спаи материалов, значения теплового коэффициента линейного расширения которых во всем интервале температур, то есть от минимальной до температуры отжига стекла, отличаются не более чем на 10 - 15%. При впае металла в стекло лучше, если тепловой коэффициент линейного расширения металла несколько ниже, чем у стекла. Тогда при остывании впая стекло обжимает металл. При отсутствии металла, обладающего требуемым значением теплового коэффициента линейного расширения, приходится изготовлять не согласованные впаи. В этом случае вакуумно-плотное соединение металла со стеклом во всем диапазоне температур, а также механическая прочность впая обеспечиваются специальной конструкцией.

Согласованный спай со стеклом марки СЛ96-1 получают при использовании платиновых вводов. Дороговизна этого металла привела к необходимости разработки заменителя, получившего название "платинит". Платинит представляет собой проволоку из железоникелевого сплава с температурным коэффициентом линейного расширения меньшим, чем у стекла. При наложении на такую проволоку слоя меди можно получить хорошо проводящую биметаллическую проволоку с большим температурным коэффициентом линейного расширения, зависящим от толщины слоя наложенного слоя меди и теплового коэффициента линейного расширения исходной проволоки. Очевидно, что такой способ согласования температурных коэффициентов линейного расширения позволяет осуществлять согласование в основном по диаметральному расширению, оставляя несогласованным температурный коэффициент продольного расширения. Для обеспечения лучшей вакуумной плотности спаев стекла марки СЛ96-1 с платинитом и усиления смачиваемости поверх слоя меди, окисленного по поверхности до закиси меди, проволока покрывается слоем буры (натриевая соль борной кислоты). Достаточно прочные впаи обеспечиваются при использовании платиновой проволоки диаметром до 0,8 мм.

Вакуумно-плотный впай в стекло СЛ40-1 получают при использовании молибденовой проволоки. Эта пара дает более согласованный впай, чем стекло марки СЛ96-1 с платинитом. Ограниченное применение этого впая связано с дороговизной исходных материалов.

Для получения вакуумно-плотных вводов в кварцевое стекло необходимы металлы с весьма малым тепловым коэффициентом линейного расширения, которых не существует. Поэтому необходимый результат получаю благодаря конструкции ввода. В качестве металла используют молибден, отличающийся хорошей смачиваемостью кварцевым стеклом. Для ламп накаливания в кварцевых колбах применяют простые фольговые вводы.

Газы

Наполнение ламп накаливания газом позволяет повысить рабочую температуру тела накала без уменьшения срока службы из-за снижения скорости распыления вольфрама в газовой среде по сравнению с распылением в вакууме. Скорость распыления снижается с ростом молекулярной массы и давления наполняющего газа. Давление наполняющих газов составляет около 8 × 104 Па. Какой газ для этого использовать?

Использование газовой среды приводит к появлению тепловых потерь из-за теплопроводности через газ и конвекции. Для снижения потерь выгодно заполнять лампы тяжелыми инертными газами или их смесями. К таким газам относятся получаемые из воздуха азот, аргон, криптон и ксенон. В таблице 3 приведены основные параметры инертных газов. Азот в чистом виде не применяют из-за больших потерь, связанных с его относительно высокой теплопроводностью.

Таблица 3

Основные параметры инертных газов

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш бизнес - От идеи до реализации