Ваш бизнес - От идеи до реализации

Эрнст Мах. Идеалист с материалистическими наклонностями:-).

В сегодняшней небольшой статье немного пройдемся по теоретическим основам и коснемся одной из важнейших характеристик полета летательных аппаратов на большой скорости, в том числе и сверхзвуковой.

Сверхзвук и число Маха … Эти два понятия довольно тесно связаны и в наше время нет, наверное, ни одного человека, который бы так или иначе не слышал о числе М . Обычно этот термин сопровождает характеристики любого сверхзвукового (и даже просто скоростного) самолета. А самолетов таких у в мире сейчас немало и число их, я думаю, вряд ли будет уменьшаться:-).

Но ведь еще совсем не так давно теория сверхзвуковых течений была именно теорией, к тому же делающей, всего лишь, первые шаги. Фундаментальные основы она начала приобретать только около 140 лет назад, когда немецкий ученый и философ Эрнст Мах занялся исследованиями аэродинамических процессов при сверхзвуковом движении тел. В тот период он открыл и исследовал некоторые явления аэродинамики сверхзвука, получившие впоследствии свое название в его честь. В их ряду стоит и число Маха .

Интересен тот факт, что в советской науке (и в научной литературе, в особенности до войны и сразу после нее) этот термин часто употреблялся либо без расшифровки (просто число М, слово «Мах» не употеблялось), либо с использованием второй фамилии - Маиевский. То есть число Маха-Маиевского .

Все это было следствием нашего тогдашнего идеологического состояния. Эрнст Мах по своим философским взглядам (он был, по словам В.И.Ленина «субъективным идеалистом») не очень-то вписывался в рамки марксистско-ленинской философии, а Н.В.Маиевский был русским ученым, который занимался, в частности, проблемами внешней баллистики.

Внешняя баллистика — наука, исследующая движение тел после их выхода из устройства, придавшего им это движение, то есть, например, полет снаряда после его выхода из ствола артиллерийского орудия. Снаряд при этом летит с очень большой скоростью, в том числе и сверхзвуковой.

Вполне закономерно, что Н.В.Маиевский в своих исследованиях и разработках (передовых для своего времени и ставших впоследствии фундаментальными) оперировал понятием, аналогичным числу Маха , причем лет на 15 раньше своего немецкого коллеги.

А самое главное (для официальной идеологии:-)) было то, что русский ученый не был философом 🙂 и не имел взглядов, противоречащих марксистско-ленинской науке 🙂 …

Однако, как бы то ни было, сегодня едва ли не самое главное определение для сверхзвука носит имя (точнее фамилию:-)) немца Эрнста Маха. И само по себе это слово уже давно перестало быть просто фамилией. Мах, он мах и есть 🙂 . Только скорость, только полет 🙂 …

Вернемся, тем не менее, к конкретике. Что же такое это самое число М , и зачем оно вообще-то нужно в авиации? Ведь летали же себе люди раньше на дозвуковых скоростях безо всяких чисел Маха, да и сейчас подавляющее большинство летательных аппаратов на земле - дозвуковые. Однако, не все так просто, как выглядит:-).

При любом полете аппарата тяжелее воздуха одним из самых важных его параметров является . Способов измерения скорости на сегодняшний день, вобщем-то, предостаточно:-). Для примера, параметры движения самолета относительно воздушной среды можно измерить следующими способами: ультразвуковой, термодинамический, тепловой, турбинный, манометрический.

А (то есть скорость относительно земли) можно измерить допплеровским, корелляционным, радиационным способом, а также способом визирования земной поверхности.

Но самый, так сказать, простой и логичный, давно применяющийся, а поэтому, естественно, проработанный и привычный все же аэрометрический (точнее говоря, аэродинамический) способ. С его помощью как раз и замеряется воздушная скорость самолета и число Маха .

Однако способ этот имеет определенные недостатки. Сам принцип его достаточно прост, и о нем мы уже . Воздух, набегая на летательный аппарат, в результате своего движения обладает некоторой кинетической энергией или, попросту говоря, скоростным напором (ρV²/2 ).

Попадая в приемник воздушного давления ( , или ) он тормозится, и его напор превращается в давление на мембрану стрелочного прибора-указателя. Чем быстрее летит самолет, тем больше скоростной напор, тем большую скорость показывает стрелка прибора. То есть, вроде бы, все как по нотам.

Но не тут-то было:-). Пока летательный аппарат летит не очень быстро (примерно до 400 км/ч) и не слишком высоко (тысяч где-то до 2-ух, 3-х) все действительно разворачивается просто и закономерно. А далее ноты начинают врать:-)…

Воздух взаимодействует с аэродинамическими поверхностями самолета, определяя тем самым параметры его полета. А эти параметры зависят от параметров состояния воздуха, как газа, которые, конечно, зависят от условий, в которых находится данный объем газа.

Например, с высотой падают . А чем плотность ниже, тем меньше будет скоростной напор, с которым набегающий поток давит на мембрану указателя скорости.

То есть получается, что если прибор в кабине пилота показывает одинаковую скорость на высотах, к примеру, 2000 м и 10000 м (), то на самом деле это означает, что самолет на 10000 м относительно воздуха (и земли, конечно, тоже:-)) движется значительно быстрее (). Все из-за того, что воздух на высоте разрежен.

Плюс еще такая, не совсем, мягко говоря, удобная для полета вещь, как сжимаемость . Воздух — это газ, и, как любой газ, его можно при определенных условиях сжать, тем самым меняя параметры его состояния. Такие условия появляются при обтекании аэродинамических поверхностей на достаточно больших скоростях полета (формально отсчет начинают от 400 км/ч ).

Воздух перестает быть однородной, одинаковой во всех направлениях средой, каковой он считается (хоть и довольно приближенно) для малоскоростных летательных аппаратов. Создаются условия для возникновения так называемых скачков уплотнения, меняются скорости движения воздушного потока на различных участках аэродинамической поверхности (профиля крыла, например), происходит сдвиг точки приложения аэродинамических сил, то есть меняется сам характер обтекания и, в конечном итоге, параметры управляемости летательного аппарата. То есть говоря «умными» терминами теории сверхзвука:-), начинается волновой кризис .

Однако, о нем мы еще будем говорить в дальнейшем. А пока можно заметить, что все эти процессы зависят от параметров воздушной среды и технико-конструктивных свойств самого летательного аппарата.

Чтобы описать аэродинамические свойства самолета во взаимодействии со средой, одной скорости движения бывает недостаточно. Ведь ее измеренная величина, качественно сама зависящая от параметров этой среды, не всегда характеризует истинную картину обтекания (как в примере выше).

Здесь нужен такой критерий, который бы учитывал «в себе» параметры потока и, опираясь на который, можно было бы всегда правильно охарактеризовать аэродинамические свойства летательного аппарата вне зависимости от условий полета.

Говоря это, я как раз и имею в виду число М . И слово «критерий» употребляю не случайно. Дело в том, что число Маха – это, говоря языком физики, один из критериев подобия в газовой динамике .

Смысл этого слегка замысловатого названия на самом деле прост и заключается в том, что если две или более физические системы имеют однотипные критерии подобия, равные по величине, то это означает, что рассматриваемые системы подобны , то есть похожи или, говоря совсем упрощенно (:-)) одинаковы.

Применительно к нашему авиационному случаю это может выглядеть, например, так. Воздушный поток на двух различных высотах (допустим те же 2000 и 10000 м), взаимодействующий с нашим летательным аппаратом – это и есть две физические системы.

Однако, если на этих высотах одинаковы, то это вовсе не означает, что указанное взаимодействие тоже будет одинаковым, скорее как раз наоборот. То есть скорость не может быть критерием подобия, и эти две системы в такой ситуации вовсе не подобны.

Однако, если мы говорим о том, что самолет на различных высотах (и вообще в различных условиях) летит с одинаковым числом Маха, то вполне правомерно утверждать, что условия обтекания и аэродинамические свойства на этих высотах (в этих условиях) будут одинаковы.

Здесь обязательно стоит сказать, что это утверждение, несмотря на свою верность, опирается, однако, на немалые упрощения. Первое – это то, что число Маха , хоть и основной для нас критерий подобия в газодинамике, но не единственный. А второе исходит из определения самого числа М .

Эрнст Мах, проводя свои исследования, вряд ли задумывался о применении их результатов в авиации:-). Ее тогда попросту не было. Определение было чисто научным и физически точным. Число Маха – это безразмерная величина, равная отношению скорости потока в данной точке движущейся газовой среды к скорости звука в этой точке.

То есть М = V/ a , где V – скорость потока в м/с, а – скорость звука в м/с. Таким образом число М как бы учитывает в себе скорость движения плюс изменение параметров воздушной среды через скорость звука, которая как раз от этих параметров и зависит.

Число Маха величина безразмерная. В единицах скорости выразить его невозможно, и перевод его в линейную скорость нецелесообразен из-за непостоянства скорости звука. Скорость летательного аппарата, используя число М , можно выразить только качественно, то есть оценивая, во сколько раз скорость самолета больше, либо меньше скорости звука.

При этом формат записи значений может быть как с использованием знака равенства, так и без него. Например запись М3 (как и М=3) может означать, что скорость летательного аппарата превысила скорость звука в три раза.

Упрощения применительно к авиации состоят в том, что скорость потока заменена на скорость движения физического тела в газовой среде, то есть имеется в виду движения самолета. За скорость звука принимается скорость звука на высоте полета. При этом, однако, не учитывается, что поток возле тела сложной формы, коим летательный аппарат и является:-), может иметь самые различные значения вблизи различных участков поверхности этого тела.

Указатель числа М на приборной доске сверхзвукового "Конкорда" (правый нижний угол). Над ним указатель скорости.

Однако, несмотря на достаточную некорректность упрощений, концепция числа Маханашла в авиации очень широкое применение. Причем не только на сверхзвуковых самолетах, для которых сведения о числе М , так сказать, жизненно необходимы:-), но и на многих дозвуковых современных самолетах.

Ведь скорости их, хоть и дозвуковые, достаточно велики. К тому же практические высоты полетов тоже немаленькие. Так как скорость звука с высотой ощутимо падает, то возникает целесообразность на больших высотах использовать при пилотировании число Маха .

Для этого есть, по крайней мере, две причины. Во-первых, из-за большой разницы , о чем я упоминал выше (лишние погрешности, к тому же очень ощутимые, никому не нужны:-)), а, во-вторых, для возможности оценки приближения волнового кризиса.

Дело в том, что для каждого типа летательного аппарата его проявления имеют место при определенных значениях числа М. В связи с этим практически все современные лайнеры имеют полетные ограничения по числу Маха для обеспечения устойчивого управления. Пилот при управлении самолетом следит за тем, чтобы это ограничение не было превышено.

Указатель приборной скорости и числа М (в центре) на приборной доске самолета ЯК-42.

Указатель истинной воздушной скорости и числа М (в центре) на приборной доске Boeing-747.

Таким образом число М - это не скорость в чистом виде, но, тем не менее, важный параметр, позволяющий экипажу правильно оценивать условия полета и осуществлять безопасное и точное управление летательным аппаратом.

Для получения информации о числе Маха практически все современные скоростные самолеты имеют в кабине экипажа указатель числа М. В просторечии его иногда именуют махметром . В большинстве случаев он представляет собой стрелочный указатель по типу указателя скорости. Такие приборы могут выдавать либо только значения числа Маха, либо могут быть объединены (скомбинированы) с указателем скорости, истинной или приборной.

Указатель числа М.

Указатель скорости УС-1600.

Указатель истинной скорости и числа М УСИМ-И. Такого типа указатель стоит на самолете МИГ-25.

Указатель истинной скорости и числа М (слева вверху) на приборной доске сверхзвукового МИГ-25.

Часто указатели числа М выполняют со специальным сигнализатором , который в нужный момент выдает предупреждение экипажу о превышении какого-либо порогового значения этого числа.

МС-1. Указатель числа М с электрической сигнализацией.

По своей конструкции и принципу действия указатель числа М вобщем-то аналогичен . Но для учета изменения условий с высотой в него добавлена анероидная коробка , реагирующая на изменение давления.

Кинематическая схема указателя числа М.

Подавляющее большинство современных самолетов летает все-таки на дозвуке . Этому режиму соответствует число Маха менее 0,8 . Следующие режимы полета, на которых М принимает значения от 0,8 до 1,2 объединены под названием трансзвук . А когда число М меняется от 1,0 до 5,0 , то это уже чистый сверхзвук , зона сверхзвукового полета современных военных самолетов.

Есть, правда, экземпляры напрямую к армии не относящиеся, более того достигающие скоростей, на которых число Маха превышает пять единиц. Это уже зона гиперзвука . Однако говорить об этих полуэкзотических аппаратах и режимах их полета мы будем уже в следующих статьях общей темы, посвященной сверхзвуку.

До новых встреч:-).

Фотографии кликабельны .

Lockheed Martin’s Skunk Works подтвердили, что разрабатывают SR-72, самолет-шпион. Преемник SR-71 Blackbird, выдавал 3.5 Маха (2200 миль в час), SR-72, станет гиперзвуковым беспилотным самолетом, который будет способен на скорость 6 Маха, или просто 4500 миль в час. На гиперзвуковой скорости, SR-72 будет способен пересечь любой материк всего за час. Таким образом, если они расположены на стратегических авианосцах США по всему миру. они смогут прибыть и атаковать любую точку на Земле всего за час. Есть подозрения, что гиперзвуковой двигатель SR-72 (некое подобие ГПВРД) присоединится к военной программе США, High Speed Strike Weapon (HSSW): это ракеты, которые могут ударить по любой точке планеты всего за несколько минут.

SR-71, или Blackbird, как вы, наверное, знаете, был вершиной военных достижений США во времена Холодной войны. Представленный в 1966, Blackbird, с его гибридными двигателями, был самым быстрым летательным средством, управляемым человеком, пока не был отправлен на пенсию в 1998. Несмотря на огромные размеры (32м длиной, и 17м размахом крыльев), SR-71 вмещал всего 2 человека, и был абсолютно безоружен (но был оснащен камерами, радиоантенной, и другими элементами для разведки). Из-за высоких затрат на использование, и спонсирование более перспективных проектов, вроде UAV, SR-71 был отправлен на пенсию после 32 лет активной службы. Из 32 построенных моделей, 12 было утрачено в результате несчастных случаев, но ни один не был сбит или захвачен противником.

SR-71 Blackbird

SR-72, несмотря на похожее имя, совершенно новый самолет. На данный момент, SR-72 все еще считается концептом, хоть Lockheed уже утвержден на активное производство. Постройка полноценно пилотируемой версии запланирована на 2018 год, а летные испытания - на 2023. Если все пойдет по плану (спонсирование еще не было утверждено), полноразмерный SR-72 (около 30м длиной) будет построен и испытан в 2030 году. Судя по текущему плану, SR-72 будет беспилотным. Это будет очень, очень большой дрон. Он, скорее всего, тоже будет безоружным, но оснащенным полным набором настоящего шпиона. Хотя, еще рано делать какие-либо предположения.

Вид из окна SR-71 на высоте 21000м. Мам, я в космосе!

SR-72, несомненно, будет образцом скрытности, облаченный в монолитные кристаллы титана, покрытые углеродным волокном, его отличительной чертой будет скорость 6 Маха (4567 миль в час, или 7350км/ч). На этой скорости, SR-72 сможет пересечь Атлантику (или Европу, или Китай, или...) приблизительно за час, или облететь планету за 6 часов. На рабочей высоте в 80000 футов (24300м), при скорости 6 Маха, SR-72 будет практически невозможно сбить.


Чтобы достичь 6 Маха, нужно немного поколдовать с аэронавтикой, иначе мы могли бы добиться этой скорости года назад. В принципе, турбовентиляторные двигатели (как в любом большом авиалайнере) могут выдать всего лишь 2.5 Маха. ПВРД может разогнаться в лучшем случае до 4 Маха, но тогда они тоже теряют свою производительность. Чтобы добиться 6 Маха, лаборатория Lockheed Skunk Works (которая занималась разработкой таких светил, как U-2, SR-71, F-22 и F-35), сотрудничает с Aerojet Rocketdyne над созданием турбореактивного двигателя/ГПВРД гибрида, который использует турбину на низких скоростях, и ГПВРД - на высоких. Как и SR-71, эти двигатели будут обладать одним соплом, со своего рода механической системой, которая направляет поток воздуха между двух частей двигателя, таким образом изменяя скорость. Воздушно-реактивный двигатель замедляет входящий воздушный поток на дозвуковых скоростях, а ГПВРД ускоряет его до сверхзвуковых, открывая возможность достижения более высоких скоростей (никто не знает, насколько высоких, но, по крайней мере, 10 Маха).

Здравствуйте, уважаемые читатели блога сайт. Понятие скорости известно нам ещё со школьной скамьи. Если говорить о её физической сущности, то это – расстояние, пройденное движущимся телом (материальной точкой) за определённый промежуток времени.

В качестве расстояния выступают как системные, так и внесистемные единицы (метры, мили, углы и др.), время же определяется в секундах или часах. Таким образом, скорость можно выразить многообразием величин, таких как метр в секунду (м/сек), километр в час (км/час), радиан в секунду (1/сек) и т.д.

Несмотря на то, что вышеупомянутые обозначения скорости без труда конвертируются одно в другое, существует ряд областей, где удобно (или исторически принято) измерять скорость в специфических единицах .

Например, моряки предпочитают «узел» (морская миля в час). В астрономии пользуются лучевой (радиальной) скоростью, в космонавтике – космическими скоростями (там их три).

В авиации же, где приходится иметь дело со сверхзвуковыми скоростями, точкой отсчёта, как правило, служит скорость распространения звуковых волн в газообразной среде (проще – скорость звука в воздухе).

Это обусловило появление такой единицы измерения, как «число Маха » (в честь австрийского физика-экспериментатора в области аэродинамики Эрнста Маха). Зачем это нужно, поговорим ниже (а попутно отметим, что к фразе «дал(а) маху» этот учёный отношения не имеет).

Особенности скорости звука

Отличительной чертой скорости звука является то, что она изменяется в зависимости от характера окружающей среды .

В частности, в чугуне скорость звука приблизительно равна 5000 м/сек, в пресной воде – 1450 м/сек, в воздухе – 331 м/сек (1200 км/час). Определение «приблизительно» выбрано неслучайно, поскольку на быстроту прохождения звуковых колебаний влияют и другие факторы.

Для интересующей нас воздушной среды факторами , влияющими на скорость звука, являются:

  1. температура (Т);
  2. давление (Р);
  3. плотность (p);
  4. влажность (f).

Перечисленные показатели тесно взаимосвязаны между собой (так, плотность является функцией от температуры, давления и влажности), а также с высотой над уровнем моря. Влияют они и на скорость звука.

Наглядно эта взаимосвязь показана в нижеприведённой таблице (по данным ИКАО).

Главное тут то, что скорость звука существенно меняется в зависимости от высоты.

1 Мах - это сколько километров в секунду

Непостоянство скорости звука (в отличие от скорости света) явилось одной из причин того, что в аэродинамике стали пользоваться параметром, получившим название «Мах».

Мах характеризует движение летательного аппарата (ЛА) в воздушном потоке, иными словами, показывает соотношение между скоростью звука в воздушной среде, обтекающей ЛА, и скоростью самого ЛА. То есть является безразмерной единицей.

1 Мах на приборной доске кабины пилота означает, что самолёт движется со скоростью звука на конкретной высоте .

Если самолет превысит скорость распространения звука на этой высоте в два раза, то на приборной панели будет красоваться 2 Мах (2 М). Общая формула расчета выглядит так:

В литературе встречается и упрощенный подход, где число Маха переводится в линейную скорость (километры в час или в секунду). В качестве эталонной единицы 1 Мах принимается равным 1 198,8 км/час или 333 м/сек , что эквивалентно скорости звука при нормальном атмосферном давлении (101,3 кПа) и нулевой температуре и влажности у поверхности Земли.

Но, как отмечено выше, атмосферные условия меняются с набором высоты, поэтому такой подход не считается корректным и не используется в математических расчётах по аэродинамике.

Когда высоко в небе мы видим реактивный самолёт, оставляющий за собой белый газовый шлейф, а в какой-то момент слышим характерный хлопок, это значит, что самолёт преодолел звуковой барьер , то есть превысил значение 1 Мах (Мах˃1).

В справочной литературе указано, что максимальная скорость истребителя МиГ-29 составляет 2,3 Маха или 2450 км/час. Получается, что в данном случае 1 Мах = 1065 км/час (295,8 м/сек). Сравнив это значение с табличными данными (см. выше), увидим, что оно соответствует высоте порядка 18 000 м, что на самом деле и является практическим потолком МиГ-29.

Подытожим . Отвечая на вопрос «какова скорость 1 маха в километрах в час» мы должны, уточнить о какой высоте полета идет речь. Посмотреть на приведенную выше таблицу и взять наиболее близкое к нужной высоте значение скорости звука и умножить его на единицу (1 Мах) или на 27, как в случае со скоростью Авангарда (об этом читайте ниже).

27 Махов - это мечта или реальность

  1. Скорость от 1 до 5 Махов считается сверхзвуковой
  2. Более 5 Махов – гиперзвуковой
  3. 23 Маха – это уже первая космическая скорость

А вот о скорости в 27 Махов заговорили в конце 2018 года, когда гиперзвуковая ракета боевого назначения «Авангард» преодолела этот рубеж на пусковых испытаниях, что сделало её недосягаемой для средств противовоздушной обороны противника.

Если принять упрощённый подход, о котором говорилось выше, то 27 Махов – это порядка 9 000 м/сек или 32 400 км/час. Но это у поверхности Земли. На высоте в 10 км это будет уже порядка 8 000 м/сек (27 х 299,5) или 28 800 км/час. В любом случае трудно себе представить, что материальное тело может летать с такой скоростью.

Хотя, что я говорю? Посадочные модули космических кораблей (и сами корабли — наш Буран или американские шаттлы) входят в атмосферу земли и на бОльших скоростях. Например, если американцы действительно были на луне, то входить в атмосферу земли при возвращении они должны были на скорости 40 Махов!

Поэтому 27 Махов — это реальность , доступная человечеству еще в шестидесятые года прошлого столетия (глупости про то, что нет материалов способных защитить от неизбежного при этом перегрева, я отнесу на необразованность).

Так в чем же Авангардов? В том, что они могут достаточно долго лететь на этой скорости (планировать) и при этом маневрировать и по высоте, и по углу.

Сбить летящую на бешенной скорости, но по заданной траектории цель не сложно (простая математика). Другое дело сбить цель, которая на такой скорости хаотично (непредсказуемо) маневрирует. Для этого противоракета должна двигаться еще быстрее, а вот это уже невозможно (вверх лететь, это вам не вниз падая планировать).

В то же время следует отметить, что ракетный двигатель не в состоянии обеспечить длительный установившийся полёт на такой скорости. Эту задачу учёные и конструкторы пытаются решить с помощью гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД), способного работать непрерывно в течение десятков минут.

Так что исследования по созданию полноценного гиперзвукового ЛА продолжаются как в России, так и за рубежом. Видимо, у нас они уже дали результат либо было найдено альтернативное решение.

Почему еще можно быть уверенным, что Авангард действительно соответствует заявленным МО характеристикам?

Посудите сами. Удар был нанесен по цели на камчатском полигоне, который отстоит всего на сотню миль от американских радаров, и которые без проблем могут отследить чуть ли не всю важнейшую стадию полета инновационной ракеты. Для чего это сделали? Можно было ведь и другие полигоны использовать?

Нужно было дать возможность противнику убедиться в заявленных характеристиках. Они убедились и это очень важно (остужает горячие головы). Теперь уже пусть они ломают голову, как это возможно и на каких физических принципах основано.

Удачи вам! До скорых встреч на страницах блога сайт

Вам может быть интересно

Что такое метеорит и метеор Ассонанс - это единство гласных СОЭ выше нормы - что это значит у мужчин, женщин и детей (таблицы значений по возрасту и возможные проблемы) LTE - что это, разговоры по VoLTE, отличие от 4G и выбор правильного телефона Аллитерация - это художественное повторение звуков
Сколько мегабайт в гигабайте, бит в байте (или килобайте) и что это вообще такое за единицы измерения информации Что такое ассортимент - его виды и 5 способов формирования Тандем - это взаимовыгодный союз Хеш - что это такое и как хэш-функция помогает решать вопросы безопасности в интернете
Пинг - что это такое, как можно его проверить и при необходимости уменьшить (понизить ping) Антиплагиат.ру - онлайн сервис, где можно проверить тексты на уникальность и выявить плагиат в любой работе (ВУЗ, журнал)

Скорость 2.5 маха — сколько это км\ч или м\с? ..

  1. Так есть общие понятия о скорости то есть не зависящих от природы погоды и т д! Что это значит скорость звука это 330 м/с! Сверхзвук это не более 1 мах (330 м/с) то есть да но свыше 660 м/с (2376 км/ч) то есть (ло) с 1 мах до 2 мах покрыт динамо-кинетической ударной волной (Кавитацией) своего рода а после сверх-ускорения до и при достижении Гиперзвука Кавитацию вытягивает до того момента пока окружающая воздушная смесь нагреется в последствии потеряет свою плотность почти в 5 раз что говорит о том что (летательный объект) выйдет на скорость свыше 10 мах (36000 км/ч) но при этом лучше поставить кавитатор способный покрыть корпус (Л О) электро-магнитным полем что приведт к более безопасным полтам как самого (Л О) и так и эго экипажа и пассажиров!!! И ещ когда мы говорим о скоростях подобным скорости звука и выше мы подразумеваем по этапное повышение значения скорости а не их рост по эспоненте то есть 1 мах 330 м/с 2 мах 660 м/с 3 мах и выше это от 3600 км/ч или 1000 (990) м/с! А все скоростные величины свыше гиперзвука должны носить названия выходящие за привычные рамки как обозначений так и самой скорости!!! То есть звук, сверх звук, гипер звук, ультра звук, мега звук и т д!!!
  2. Зачем писать, если не правильно?
  3. 1 Мах — 330 м/сек или 1080 км/ч
    2,5 М = 2700 км/ч

    ЧИСЛО МАХА, отношение скорости тела или ТЕКУЧЕЙ СРЕДЫ (газа или жидкости) к скорости звука в окружающей среде. Таким образом, число Маха, равное 1, выражает локальную скорость ЗВУКА. Самолет, летящий со скоростью ниже 1 Маха, считается дозвуковым, т. е. летящим со скоростью меньше скорости звука. СВЕРХЗВУКОВОЙ ПОЛЕТ означает полет со скоростью выше 1 Маха. Числа Маха названы в честь Эрнста МАХА, который исследовал сверхзвуковые скорости и ударные волны.
    http://dic.academic.ru/dic.nsf/ntes/5531/число маха

  4. Для понимания числа Маха неспециалистами очень упрощнно можно сказать, что численное выражение числа Маха зависит, прежде всего, от высоты полта (чем больше высота, тем ниже скорость звука и выше число Маха). Число Маха это истинная скорость в потоке (то есть скорость, с которой воздух обтекает, например, самолт), делнная на скорость звука в конкретной среде, поэтому зависимость является обратно пропорциональной. У земли скорость, соответствующая 1 Маху, будет равна приблизительно 340 м/с (скорость, с которой люди привычно считают расстояние приближающейся грозы, измеряя время от вспышки молнии до дошедших раскатов грома) или 1224 км/ч. На высоте 11 км из-за падения температуры скорость звука ниже около 295 м/с или 1062 км/ч.
  5. 1 мах — это одна скорость звука, равная 330 м/с =gt; 2,5 маха — это 835 м/с
  6. Нельзя сказать, не зная высоты.
    Скорость звука в воздухе на различной высоте над уровнем моря. При 15 C и 760 мм рт. ст. (101325 Па) на уровне моря.
    Скорость звука в воздухе на различной высоте над уровнем моря. При 15 C и 760 мм рт. ст. (101325 Па) на уровне моря. Высота, м Скорость звука, м/с
    0340,29
    50340,10
    100339,91
    200339,53
    300339,14
    400338,76
    500338,38
    600337,98
    700337,60
    800337,21
    900336,82
    1000336,43
    5000320,54
    10000299,53
    20000295,07
    50000329,80
    80000282,54

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 километр в час [км/ч] = 0,00080843357909714 число Маха (20°C, 1 атм)

Исходная величина

Преобразованная величина

метр в секунду метр в час метр в минуту километр в час километр в минуту километр в секунду сантиметр в час сантиметр в минуту сантиметр в секунду миллиметр в час миллиметр в минуту миллиметр в секунду фут в час фут в минуту фут в секунду ярд в час ярд в минуту ярд в секунду миля в час миля в минуту миля в секунду узел узел (брит.) скорость света в вакууме первая космическая скорость вторая космическая скорость третья космическая скорость скорость вращения Земли скорость звука в пресной воде скорость звука в морской воде (20°C, глубина 10 метров) число Маха (20°C, 1 атм) число Маха (стандарт СИ)

Подробнее о скорости

Общие сведения

Скорость - мера измерения пройденного расстояния за определенное время. Скорость может быть скалярной величиной и векторной - при этом учитывается направление движения. Скорость движения по прямой линии называется линейной, а по окружности - угловой.

Измерение скорости

Среднюю скорость v находят, поделив общее пройденное расстояние ∆x на общее время ∆t : v = ∆x /∆t .

В системе СИ скорость измеряют в метрах в секунду. Широко используются также километры в час в метрической системе и мили в час в США и Великобритании. Когда кроме величины указано и направление, например 10 метров в секунду на север, то речь идет о векторной скорости.

Скорость движущихся с ускорением тел можно найти с помощью формул:

  • a , с начальной скоростью u в течении периода ∆t , имеет конечную скорость v = u + a ×∆t .
  • Тело, движущееся с постоянным ускорением a , с начальной скоростью u и конечной скоростью v , имеет среднюю скорость ∆v = (u + v )/2.

Средние скорости

Скорость света и звука

Согласно теории относительности, скорость света в вакууме - самая большая скорость, с которой может передвигаться энергия и информация. Она обозначается константой c и равна c = 299 792 458 метров в секунду. Материя не может двигаться со скоростью света, потому что для этого понадобится бесконечное количество энергии, что невозможно.

Скорость звука обычно измеряется в упругой среде, и равна 343,2 метра в секунду в сухом воздухе при температуре 20 °C. Скорость звука самая низкая в газах, а самая высокая - в твердых телах. Она зависит от плотности, упругости, и модуля сдвига вещества (который показывает степень деформации вещества при сдвиговой нагрузке). Число Маха M - это отношение скорости тела в среде жидкости или газа к скорости звука в этой среде. Его можно вычислить по формуле:

M = v /a ,

где a - это скорость звука в среде, а v - скорость тела. Число Маха обычно используется в определении скоростей, близких к скорости звука, например скоростей самолетов. Эта величина непостоянна; она зависит от состояния среды, которое, в свою очередь, зависит от давления и температуры. Сверхзвуковая скорость - скорость, превышающая 1 Мах.

Скорость транспортных средств

Ниже приведены некоторые скорости транспортных средств.

  • Пассажирские самолеты с турбовентиляторными двигателями: крейсерская скорость пассажирских самолетов - от 244 до 257 метров в секунду, что соответствует 878–926 километрам в час или M = 0,83–0,87.
  • Высокоскоростные поезда (как «Синкансэн» в Японии): такие поезда достигают максимальных скоростей от 36 до 122 метров в секунду, то есть от 130 до 440 километров в час.

Скорость животных

Максимальные скорости некоторых животных примерно равны:

Скорость человека

  • Люди ходят со скоростью примерно 1,4 метра в секунду или 5 километров в час, и бегают со скоростью примерно до 8,3 метра в секунду, или до 30 километров в час.

Примеры разных скоростей

Четырехмерная скорость

В классической механике векторная скорость измеряется в трехмерном пространстве. Согласно специальной теории относительности, пространство - четырехмерное, и в измерении скорости также учитывается четвертое измерение - пространство-время. Такая скорость называется четырехмерной скоростью. Ее направление может изменяться, но величина постоянна и равна c , то есть скорости света. Четырехмерная скорость определяется как

U = ∂x/∂τ,

где x представляет мировую линию - кривую в пространстве-времени, по которой движется тело, а τ - «собственное время», равное интервалу вдоль мировой линии.

Групповая скорость

Групповая скорость - это скорость распространения волн, описывающая скорость распространения группы волн и определяющая скорость переноса энергии волн. Ее можно вычислить как ∂ω /∂k , где k - волновое число, а ω - угловая частота. K измеряют в радианах/метр, а скалярную частоту колебания волн ω - в радианах в секунду.

Гиперзвуковая скорость

Гиперзвуковая скорость - это скорость, превышающая 3000 метров в секунду, то есть во много раз выше скорости звука. Твердые тела, движущиеся с такой скоростью, приобретают свойства жидкостей, так как благодаря инерции, нагрузки в этом состоянии сильнее, чем силы, удерживающие вместе молекулы вещества во время столкновения с другими телами. При сверхвысоких гиперзвуковых скоростях два столкнувшихся твердых тела превращаются в газ. В космосе тела движутся именно с такой скоростью, и инженеры, проектирующие космические корабли, орбитальные станции и скафандры, должны учитывать возможность столкновения станции или космонавта с космическим мусором и другими объектами при работе в открытом космосе. При таком столкновении страдает обшивка космического корабля и скафандр. Разработчики оборудования проводят эксперименты столкновений на гиперзвуковой скорости в специальных лабораториях, чтобы определить, насколько сильные столкновения выдерживают скафандры, а также обшивка и другие части космического корабля, например топливные баки и солнечные батареи, проверяя их на прочность. Для этого скафандры и обшивку подвергают воздействию ударов разными предметами из специальной установки со сверхзвуковыми скоростями, превышающими 7500 метров в секунду.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш бизнес - От идеи до реализации