Ваш бизнес - От идеи до реализации

Зоопланктон (животный планктон) - это мелкие организмы, которые часто оказываются во власти океанских течений, но, в отличие от фитопланктона, не способны к .

Особенности

Термин зоопланктон не является таксономическим, но характеризует образ жизни некоторых животных, которые передвигаются благодаря течению воды. Зоопланктон либо слишком мал, чтобы противостоять течению, либо большой (как в случае многих медуз), но не имеет органов, позволяющих свободно плавать. Кроме того, есть такие организмы, которые являются планктоном только на определенной стадии их жизненного цикла.

Слово планктон происходит от греческого слова planktos , означающего «странствующий» или «блуждающий». Слово зоопланктон включает в себя греческое слово zoion, означающее «животного».

Виды зоопланктона

Полагают, что существует более 30 000 видов зоопланктона. Он может обитать в пресной или соленой воде по всему миру, включая океаны, моря, реки, озёра и т.д.

Типы зоопланктона

Зоопланктон можно классифицировать по размеру или по длине тела. Некоторые термины, которые используются для обозначения зоопланктона, включают:

  • Микропланктон - организмы размером 20-200 мкм - сюда входят некоторые копеподы и другой зоопланктон.
  • Мезопланктон - организмы размером 200 мкм-2 мм, в том числе личинки ракообразных.
  • Макропланктон - организмы размером 2-20 мм, которые включают эвфаузиевых (например, криль - важный источник пищи для многих организмов, включая усатых китов).
  • Микронектон - организмы размером 20-200 мм. Примеры включают некоторых эвфаузиевых и головоногих .
  • Мегапланктон - планктонные организмы размером более 200 мм, в том числе и сальпы.
  • Голопланктон - организмы, которые являются планктонными на протяжении всей их жизни - например, копеподы.
  • Меропланктон - организмы, которые имеют планктонную стадию жизненного цикла, но вырастают из нее в какой-то момент, к примеру, рыбы и .

Чем питается зоопланктон?

Зоопланктон и пищевые цепи

Зоопланктон, как правило, находится на втором трофическом уровне , которые начинаются с фитопланктона. В свою очередь, фитопланктон, съедается зоопланктоном, который едят мелкие рыбы и даже гигантские киты.

Обитающих в пресных водах планктонных ракообразных и коловраток поедают рыбы, а также целый ряд относительно мелких беспозвоночных хищников (ветвистоусый рачок Leptodora kindti, многие веслоногие ракообразные, личинки некусающегося комара Chaoborus и др.). У нападающих на «мирный» зоопланктон рыб и беспозвоночных хищников разные стратегии охоты и разная наиболее предпочтительная добыча.

В процессе охоты рыбы обычно полагаются на зрение, стараясь выбрать добычу максимального для них размера: для подросших рыб это, как правило, самые крупные из встречающихся в пресных водах планктонных животных, в том числе и беспозвоночные хищники-планктонофаги. Беспозвоночные хищники нападают преимущественно на мелких или среднего размера планктонных животных, поскольку с крупными они просто не могут справиться. В процессе охоты беспозвоночные хищники ориентируются, как правило, с помощью механорецепторов, и потому многие из них в отличие от рыб могут нападать на своих жертв и в полной темноте. Очевидно, сами беспозвоночные хищники, будучи наиболее крупными представителями планктона, могут легко стать жертвами рыб. Видимо, поэтому им «не выгодно» быть особо крупными, хотя это и позволило бы расширить размерный диапазон их потенциальных жертв.

Чтобы защититься от беспозвоночных хищников, планктонным животным выгоднее обладать более крупными размерами, но при этом сразу же возрастает опасность стать хорошо заметной, а потому и легко доступной добычей для рыб. Компромиссным решением этих, казалось бы, несовместимых, требований было бы увеличение реальных размеров, но за счет каких-либо прозрачных выростов, не делающих их обладателей особо заметными. И действительно, в эволюции разных групп планктонных животных наблюдается возникновение подобных «механических» средств защиты от беспозвоночных хищников. Так, ветвистоусый рачок Holopedium gibberum образует вокруг своего тела шарообразную студенистую оболочку (рис. 51), которая, будучи совершенно бесцветной, не делает его особо заметным для рыб, но в то же время защищает от беспозвоночных хищников (например, от личинок Chaoborus), поскольку им просто трудно ухватить такую жертву. Защитную функцию могут выполнять и различные выросты панциря дафний и коловраток, причем, как выяснилось, некоторые из этих образований развиваются у жертв под влиянием определенных веществ, выделяемых находящимися неподалеку хищниками. Сначала подобное явление было обнаружено (Beauchamp, 1952; Gilbert, 1967) у коловраток: самки жертвы - коловратки брахионус (Brachionus calyciflorus), выращиваемые в воде, в которой ранее содержали хищных коловраток рода аспланхна (Asplanchna spp.), продуцировали молодь с особо длинными боковыми шипами панциря (см. рис. 51). Эти шипы сильно мешали аспланхнам заглатывать брахионусов, так как те в буквальном смысле вставали у них поперек горла.

Позднее различные выросты тела, индуцированные хищниками, были обнаружены и у ракообразных. Так, в присутствии хищных личинок Chaoborus у молодых особей Daphnia pulex отрастал на спинной стороне «зубовидный» вырост, существенно снижающий вероятность успешного поедания их этими хищниками (Krueger, Dodson, 1981; Havel, Dodson, 1984), а у некоторых австралийских Daphnia carinata в присутствии хищных клопов Anisops calcareus (сем. Notonectidae) на спинной стороне образовывался прозрачный гребень, по-видимому, также сильно мешающий хищнику в схватывании и поедании добычи (см. рис. 51).

От большинства рыб подобные выросты защитить не могут, и потому планктонным ракообразным при наличии в водоеме рыб чрезвычайно важно сохранять незаметность и (или) избегать непосредственных встреч с ними, особенно в условиях хорошей освещенности. Поскольку концентрация пищи планктонных ракообразных максимальна как раз у поверхности, неудивительно, сколь часто обнаруживаем мы у них существование вертикальных суточных миграций, выражающихся как подъем ночью в богатые пищей поверхностные слои и опускание на день в слои, более глубокие, где слабая освещенность, а также возможность снизить локальную плотность посредством рассеяния в большем объеме препятствуют выеданию их рыбами.

Сами по себе вертикальные миграции требуют определенных энергетических затрат. Кроме того, малое количество пищи и низкая температура на большой глубине приводят к снижению интенсивности размножения и замедлению развития рачков, а следовательно, в конечном счете к уменьшению скорости их популяционного роста. Это отрицательное для популяции следствие вертикальных миграций обычно рассматривают как «плату» за защиту от хищников. Вопрос о том, стоит ли подобным способом «расплачиваться» за защиту от хищников, может в эволюции решаться по-разному. Так, например, в глубоком Боденском озере на юге ФРГ обитают два внешне похожих вида дафний: Daphnia galeata и Daphnia hyalina, причем первый вид постоянно держится в верхних, прогреваемых слоях водной толщи (эпилимнионе), а второй - летом и осенью совершает миграции, поднимаясь в эпилимнион ночью и опускаясь на большие глубины (в гиполимнион) днем. Концентрация пищи обоих видов дафний (главным образом это мелкие планктонные водоросли) достаточно высока в эпилимнионе и очень низка в гиполимнионе. Температура в середине лета в эпилимнионе достигает 20°, а в гиполимнионе едва доходит до 5°. Исследователи из ФРГ X. Штих и В. Ламперт (Stich, Lampert, 1981, 1984), подробно изучившие дафний Боденского озера, предположили, что миграции D. hyalina позволяют ей в значительной мере избежать пресса рыб (сигов и окуня), а D. galeata, оставаясь все время в эпилимнионе, в условиях сильного пресса рыб способна противостоять ему очень высокой рождаемостью. Свою гипотезу о разных стратегиях выживания этих дафний X. Штих н В. Ламперт проверяли в лабораторных условиях, когда в отсутствие хищника для обоих видов имитировали условия постоянного пребывания в эпилимнионе (постоянно поддерживаемая высокая температура и большое количество пищи) и условия вертикальных миграций (меняющийся в ходе суток температурный режим и меняющееся количество пищи). Оказалось, что в таких искусственно созданных условиях эпилимниона оба вида прекрасно себя чувствовали и имели высокую рождаемость. В случае же имитирования условий вертикальных миграций выживаемость и интенсивность размножения обоих видов были существенно ниже, но интересно, что D. hyalina характеризовалась при этом гораздо лучшими показателями выживаемости и размножения, чем D. galeata. При имитировании же условий эпилимниона некоторое преимущество (правда, незначительное) оказывалось у D. galeata. Таким образом, различия в пространственно-временном распределении этих видов дафний отвечали различиям их физиологических особенностей.

В пользу предположения о том, что именно пресс рыб-планктонофагов является фактором, ответственным за возникновение у планктонных животных вертикальных миграций, свидетельствуют и данные, полученные польским гидробиологом М. Гливичем (Gliwicz, 1986). Обследовав ряд небольших озер в Татрах, Гливич обнаружил, что часто встречающийся в них представитель веслоногих ракообразных циклоп Cyclops abyssorum совершает суточные вертикальные миграции в тех озерах, где есть рыбы, но не совершает там, где рыбы отсутствуют. Интересно, что степень выраженности вертикальных миграций циклопов в том или ином конкретном водоеме зависела от того, сколь долго существует в нем постоянное рыбное население. В частности, слабые миграции отмечены в одном озере, куда рыбы были занесены только за 5 лет до проведения обследования, а значительно более сильные там, где рыбы появились 25 лет назад. Но наиболее четко миграции циклопов были выражены в том озере, где рыбы, насколько известно, существовали очень давно, по-видимому, уже несколько тысячелетий. Еще одним дополнительным доводом в пользу обсуждаемой гипотезы может служить установленный М. Гливичем факт отсутствия в одном озере миграции циклопов в 1962 г., спустя всего несколько лет после запуска туда рыб, и наличие там же четких миграций их в 1985 г. после 25-летнего сосуществования с рыбами.

Состав планктона . Составляющие планктон организмы очень разнообразны. Растительные формы представлены здесь почти исключительно микроскопическими низшими одноклеточными водорослями. Наиболее распространены среди них диатомовые водоросли, заключенные в своеобразную кремневую раковинку, похожую на коробочку с крышечкой. Эти раковинки имеют разнообразную форму и очень прочны. Падая после смерти на дно, водоросли покрывают так называемым диатомовым илом громадные пространства дна океанов в высоких широтах. В ископаемом состоянии такие скопления раковинок диатомей дают начало богатой кремнеземом горной породе - трепелу, или инфузорной земле.

Лишь немного уступают диатомовым по их значению в планктоне перидиниевые водоросли, характеризующиеся наличием двух лежащих в желобках жгутиков, из которых один - поперечный - опоясывает тело, а другой направлен назад. Тело перидиней покрыто либо тонкой протоплазматической оболочкой, либо панцирем из многих пластинок, состоящих из вещества, сходного с клетчаткой. Форма тела округлая, иногда имеются три отростка. Интересны также крайне мелкие кокколитины, которые имеют пронизанную известковыми тельцами оболочку. Такими же незначительными размерами обладают снабженные скелетиками кремниевые жгутоносцы.

Подчиненное значение в планктоне морей имеют синезеленые водоросли, однако в некоторых опресненных морях, например в Азовском, они часто размножаются в таком количестве, что вода приобретает зеленый цвет.

Из одноклеточных животных наиболее характерны для планктона корненожки-глобигерины с многокамерными известковыми раковинками, покрытыми длинными тонкими иглами. Падая после смерти на дно, они покрывают громадные площади дна океанов богатым известью глобигериновым илом.

Скопления лучисток или радиолярий с очень красивыми, тончайшими, как кружево, кремниевыми скелетиками также покрывают немалые площади дна океанов.

Весьма характерны для морского планктона широко распространенные колокольчиковые ресничные инфузории, но их скелет менее прочен, и потому они не образуют таких донных отложений, как диатомовые, корненожки и радиолярии. Домики их имеют форму колокольчиков, вазочек, заостренных цилиндриков, трубочек и пр.

Из бесцветных жгутиковых несомненно наибольшей известностью пользуются шаровидной формы ночесветки, или ноктилюки, обладающие способностью светиться.

Весьма интересны гидроидные полипы - сифонофоры, колониальные кишечнополостные со сложно дифференцированными колониями, с глубоким разделением функций: питающие, защитные, плавательные, ловчие и половые. Очень многочисленны и разнообразны медузы, имеющие форму зонтиков или дисков, гребневики.

Черви представлены, главным образом, разнообразными личинками - трохофорами и нектохетами. Некоторые виды червей в период размножения ведут планктонный образ жизни, поднимаясь к самой поверхности. Есть два семейства чисто планктонных кольчатых червей.

Решающую роль в планктоне играют ракообразные.

Все отряды этого класса живут в планктоне либо всю жизнь (например, веслоногие и ветвистоусые рачки), либо только в личиночный период (креветки, крабы). Веслоногие рачки составляют основной фон животного планктона морей.

Из моллюсков чисто планктонными группами являются совершенно прозрачные киленогие и крылоногие моллюски. Раковинки последних, после смерти моллюсков, опускаются на дно, где образуют, подобно корненожкам и радиоляриям, птероподовый ил, отличающийся обилием извести. Брюхоногие и двустворчатые моллюски имеют планктонных личинок, для которых характерно наличие спирально завитой или двустворчатой раковинки и своеобразного, покрытого по краям ресничками, двухлопастного органа передвижения. В период размножения они массами заполняют планктон.

Мшанки и иглокожие представлены только личинками. Планктонный образ жизни ведут голотурии. Из низших хордовых очень многочисленны сальпы, светящиеся пирозомы и живущие в прозрачных ловчих домиках аппендикулярии. Многочисленные яйца и личинки рыб также заполняют планктон.

Наконец, толща морской воды заселена бесчисленным количеством бактерий. Разнообразие внешней формы бактерий очень невелико и исчерпывается всего несколькими типами: палочки, шарики, или кокки, более или менее длинные спиральки - спирохеты. Многие из них имеют жгутики и активно подвижны. Для их различия используются главным образом физиологические характеристики и в меньшей степени - внешняя форма. Они играют важнейшую роль в процессах превращения веществ в море - от разложения сложных остатков растительных и животных организмов до превращения их в усвояемые растениями соединения углерода, азота, серы и фосфора.

Среди бактерий различают автотрофные, которые способны, подобно растениям, строить белки и углеводы из неорганических веществ. Одни из них - фотосинтетики - используют для этих процессов солнечную энергию другие - хемосинтетики - химическую энергию окисления сероводорода, серы, аммиака и т. п.

Подвижные растения и прикрепленные животные . Наличие в море планктона обусловило развитие исключительно своеобразной категории животных, которые совершенно не встречаются на суше, именно неподвижных, прикрепленных, или так называемых сидячих. Растения на суше прикреплены к почве и неподвижны. Травоядные животные должны обладать способностью подходить к пище и для этого передвигаться. Хищники должны ловить свою добычу. Словом, все животные суши должны активно двигаться.

В воде, благодаря наличию планктона и взвешенных остатков отмерших организмов - детрита, животное может оставаться неподвижным, пищу ему принесут токи воды, поэтому прикрепленный образ жизни широко распространен среди морских животных. Таковы гидроидные полипы и кораллы, многие черви, ракообразные, или морские желуди, мшанки, морские лилии и т. п. Из моллюсков как пример приведем известных всем устриц, плотно прицементированных к скалам или вообще к твердым предметам. Все эти животные или обладают своеобразными, не встречающимися у наземных животных, аппаратами для выцеживания пищи из воды, или стремятся возможно шире охватить пространство многочисленными, околоротовыми щупальцами, или же развивают древовидно-ветвистую форму.

Не удивительно, что биологи долгое время не знали, относить ли эти растениеподобные существа к миру растений или к миру животных, и назвали их животнорастениями.

Теперь мы знаем, что они не могут, подобно растениям, усваивать углекислоту и другие неорганические вещества, а питаются, как все животные, готовой, созданной другими организмами органической пищей, и поэтому мы считаем их животными, хотя они не могут двигаться. Так, благодаря большому удельному весу воды и растворенным в ней солям, в водной среде могут существовать свободно плавающие растения и прикрепленные животные.

В состав населения дна, или бентоса, помимо этих прикрепленных животных, в совокупности называемых сидячим бентосом, входят и свободноподвижные животные - вагильный бентос: черви, ракообразные, моллюски - двустворчатые, брюхоногие и головоногие, иглокожие и пр. Часть из них питается собственно планктоном, другие - планктоноядными животными. Таким образом, бентос в целом - и подвижный и прикрепленный - в своем питании прямо или косвенно связан с планктоном, так как прикрепленные водоросли играют совсем незначительную роль в экономике моря. Поэтому можно ожидать, что там, где много планктона, и бентос будет обилен. Однако далеко не всегда так бывает. Условия в придонных слоях могут быть неблагоприятны для развития бентоса (наличие сероводорода, недостаток кислорода и т. п.) и тогда, несмотря на богатство планктона, бентоса может быть мало или он может совсем отсутствовать. При значительных глубинах в доступных для солнечного света слоях питательные вещества используются в толще воды и до дна их доходит так мало, что бентос может быть беден, несмотря на большую продукцию планктона в верхних слоях. Но такое соотношение, когда планктона мало, а бентоса много, может быть только временным.

Почти все бентонические животные имеют планктонных личинок. Планктон является как бы детским садом для организмов бентоса. Значит, в известные сезоны бентос не только потребитель планктона, но и его производитель.

Жизнь и взаимосвязи организмов планктона . Свободно плавающие растительные организмы - диатомовые и жгутиковые водоросли - питаются, растут, размножаются за счет растворенных в воде углекислоты, нитратов, фосфатов и прочих неорганических соединений, из которых на солнечном свету они строят сложные органические соединения своего тела. Это производители органических веществ. Этими микроскопическими растениями питаются рачки, черви и прочие растительноядные животные, которые могут питаться только готовыми, созданными растениями, органическими веществами и не могут использовать из окружающей среды неорганические соединения. Это потребители первого порядка. За счет растительноядных питаются хищники - потребители второго порядка. Их в свою очередь поедают более крупные хищники - потребители третьего порядка и т. д. Таковы взаимоотношения внутри этого сообщества.

В конце концов все организмы - и производители и потребители - умирают. Их трупы так же, как и выделения и экскременты, в результате деятельности бактерий и других микроорганизмов, превращаются снова в растворенные в воде биогенные элементы - исходный материал для нового построения тел растительных организмов с помощью солнечной энергии, и цикл превращений вещества замыкается.

Таким образом, входящие в состав организмов химические элементы - азот, углерод, водород, кислород, фосфор, сера и др. - находятся в постоянном движении по кругу: водоросли (производители) - животные (потребители) - бактерии и растворенные в воде биогенные соединения.

Это круговое движение элементов совершается за счет солнечной энергии, улавливаемой и аккумулируемой растительными организмами в форме химической энергии сложных органических веществ. Животные потребляют только органические вещества, созданные растениями, расходуя накопленную ими энергию. Таковы в общих чертах взаимоотношения между растительной и животной частью планктона. Отсюда понятно, что соотношение зоопланктона и фитопланктона должно быть прямым, то есть в местах, где мало фитопланктона, должно быть мало и зоопланктона, и, наоборот, при увеличении фитопланктона должно возрастать и количество зоопланктона.

Однако такое соотношение между растительной и животной частями планктона не может оставаться неизменным постоянно. На богатом корме фитопланктона идет усиленное размножение зоопланктеров и может наступить такой момент, когда, например, в результате исчерпания запаса биогенных соединений в воде, продукция фитопланктона начнет уменьшаться. В конце концов может получиться, что зоопланктона будет много, а фитопланктона мало, то есть соотношение станет обратным. Зоопланктон начнет вымирать от недостатка пищи.

Таким образом, количественные соотношения зоопланктона и фитопланктона не могут оставаться постоянными в силу биологической сущности взаимоотношений растительной и животной части планктона, основу которой составляет борьба за существование.

Вопрос о численных взаимоотношениях бактерий, фитопланктона и зоопланктона пока еще мало изучен. Однако, исходя из того, что бактерии большей частью живут за счет распада организмов, можно предполагать, что чем больше будет фитопланктона и зоопланктона, тем больше будет бактерий. В силу колоссальной скорости размножения бактерий, поедание их зоопланктоном вряд ли может существенно изменить эти взаимоотношения.

Кроме чисто биологических внутренних причин на эти отношения могут воздействовать и внешние условия, о чем будет сказано ниже.

Приспособления к планктонному образу жизни . Как было сказано, в силу того что удельный вес протоплазмы хоть и незначителен, но все же больше удельного веса чистой воды, планктонные организмы, чтобы держаться в толще воды, должны обладать некоторыми приспособлениями, препятствующими погружению или хотя бы замедляющими его. Чтобы понять сущность этих приспособлений, необходимо ознакомиться с условиями плавучести. Взаимоотношение этих условий выражается так:

Рассмотрим, что представляют собой отдельные компоненты.

Вязкость, или внутреннее трение, - свойство текучих тел, определяющее сопротивления частиц при смещении их относительно друг друга. При повышении температуры воды от 0 до +30-40°С на каждый градус вязкость убывает примерно на 2-3%. С повышением солености вязкость увеличивается, но очень немного. Вязкость воздуха в 37 раз меньше вязкости воды. Следовательно, уже в силу этого тело в воздухе будет падать в 37 раз быстрее, чем в воде. В теплой и пресной воде условия плавучести будут хуже чем в морской и холодной. В тропических водах приспособления к планктонному образу жизни должны быть выражены сильнее, чем в холодных.

Сопротивление формы - способность тел оказывать противодействие каким-либо воздействиям, изменениям.

Остаточный вес равняется весу организма за вычетом веса вытесненной им воды. Таким образом, остаточный вес тем меньше, чем больше вес вытесненной воды, а эта величина находится в прямой зависимости от удельного веса воды. Следовательно, при повышении солености плавучесть будет увеличиваться. Чем ближе значение температуры воды к температуре ее наибольшей плотности (+ 4°С для пресной воды), тем больше будет увеличиваться плавучесть.

Если вязкость воды и ее удельный вес как факторы, определяющие скорость погружения (плавучесть), не зависят от организма, то вес самого организма и сопротивление формы являются его признаками и как таковые подлежат естественному отбору и, следовательно, в ходе эволюции могут совершенствоваться, приспосабливаясь к изменению условий.

Рассмотрим сначала, какими путями может достигаться уменьшение веса организма. Средний удельный вес протоплазмы принимается за 1,025, то есть только немного больше удельного веса воды; при этом, с одной стороны, в организмах находим вещества более тяжелые (кости, раковины, панцири ракообразных и другие скелетные образования), и с другой, - легкие (жиры, масла, газы и т. п.). Отсюда ясно, что приспособление к плавучести должно быть направлено: 1) на уменьшение, или редукцию, минеральных скелетов раковин и других тяжелых частей; 2) на развитие таких легких поддерживающих образований, как жировые и масляные включения, газовые пузырьки; 3) наконец, удельный остаточный вес организма будет уменьшаться при пропитывании тканей водой, объем организма будет увеличен при относительно малом количестве сухого вещества.

Все эти пути уменьшения остаточного веса в различных комбинациях наблюдаются в природе среди планктонных организмов.

Редукция тяжелых образований . Благодаря большому удельному весу воды организмы в водной среде теряют почти весь вес. Вода своим давлением как бы поддерживает организм. Поэтому в воде могут существовать мягкие, лишенные скелета, студенистые формы. Таковы, например, нежные, как полужидкий студень, гребневики, из которых особенно замечателен венерин пояс (Cestus veneris), достигающий, при всей непрочности своих тканей, свыше метра длины. Таковы медузы, особенно синяя арктическая, которая достигает двух метров в диаметре. Вынутые из воды такие формы расплющиваются и погибают.

Редукция скелетных образований у планктонных корненожек выражается в том, что у них тонкие раковинки, они имеют более крупные поры, чем раковинки корненожек, живущих на дне.

У киленогих моллюсков, ведущих планктонный образ жизни, встречаем все ступени редукции раковины: 1) тело моллюска полностью может спрятаться в раковину; 2) раковина прикрывает только половую железу; 3) раковина совершенно исчезает.

У крылоногих моллюсков раковина тонкая и прозрачная или, большей частью, совсем отсутствует.

Накопление веществ с меньшим удельным весом (жиры, масла) наблюдается у диатомовых, ночесветок, очень многих радиолярий, у веслоногих ракообразных. Все жировые включения представляют собой запасы питательных веществ и одновременно уменьшают остаточный вес. Такие же функции выполняют и жировые капельки в пелагических яйцах и икринках рыб. В панцирях планктонных ракообразных по сравнению с формами, населяющими дно, количество кальция в золе уменьшается и одновременно увеличивается количество жира: у ползающего по дну травяного краба (Carcinus) кальция в золе 41%, жира 2%. У одного из крупных планктонных веслоногих раков аномалоцеры (Anomalocera) кальция 6%, жира 5%.

Еще более эффективным для уменьшения остаточного веса является накопление газа. Так, синезеленые водоросли имеют специальные газовые вакуольки. Многоклеточные саргассовые водоросли, плавающие в Атлантическом океане, имеют газовые пузыри, которые поддерживают их в воде. Но особенной известностью пользуются наполненные газом гидростатические аппараты сифонофор, парусника, водного цветкового растения пузырчатки и др.

Пропитывание тканей водой и образование студней встречаем у различных одноклеточных и колониальных водорослей, медуз, гребневиков, крылоногих, киленогих моллюсков. Установлено, что в Балтийском море, где вода более пресная и, следовательно, условия плавучести хуже, тело медузы аурелии (Aurelia) содержит 97,9% воды, а в Адриатике, где соленость свыше 35% и условия плавучести лучше, - только 95,3%. Возможно, что это связано именно с условиями плавучести в этих морях.

Сопротивление формы и размеры планктеров . Известно, что сопротивление, оказываемое средой движущемуся телу, связано с внутренним трением смещаемых частиц воды и пропорционально смещаемой поверхности. Таким образом, скорость погружения будет обратно пропорциональна удельной поверхности, то есть, отношению поверхности тела к его объему. При уменьшении размеров тела его поверхность убывает пропорционально квадрату, а объем - кубу линейных размеров. Для шара удельная поверхность равняется 4r 2 π: 4 / 3 /r 3 π = 3/r, то есть шар радиусом в 1 будет иметь удельную поверхность 3; в 2 - 1 1 / 2 ; 3 - 1; 4 - 3 / 4 ; 5 - 3 / 5 ; 6 - 1 / 2 ; 7 - 3 / 7 ; 8 - 3 / 8 и т. д.

Таким образом, малый размер организма дает ему в отношении плавучести преимущество перед крупным. Отсюда понятно, почему в планктоне преобладают мелкие формы. Для водорослей, например, малый размер дает преимущество для большей адсорбции питательных солей, которые в морях содержатся в очень небольших количествах.

Планктеров различают по величине.

Ультрапланктон - организмы размерами до нескольких микронов.

Наннопланктон. Размеры - меньше 50 микронов. Организмы таких размеров проходят через самый густой мельничный газ с ячеей в 65-50 микронов. Поэтому для учета наннопланктона применяется центрифугирование или осаждение в высоких сосудах (центрифужный, или осадочный планктон, содержит бактерий беспанцирных и кремниевых жгутоносцев, кокколитофорид).

Микропланктон уже улавливается густыми номерами мельничного газа. Сюда относят панцирных перидиней, диатомовых, простейших, мелких ракообразных и др. Размеры микропланктонных организмов от 50 до 1000 микронов.

Мезопланктон - основная масса животных организмов планктона: веслоногие, ветвистоусые рачки и пр. Размеры - от 1 до 15 мм.

Макропланктон измеряется сантиметрами. Сюда относят медуз, сифонофор, сальп, пирозом, киленогих, крылоногих моллюсков и пр.

Мегалопланктон включает очень немногие крупные формы размерами около одного метра, среди них упоминавшиеся уже венерин пояс, синяя медуза Арктики и другие исключительные гиганты. Отметим, что как макропланктон, так и мегалопланктон состоят исключительно из форм с сильно развитым пропитанным водой студнеобразным телом, которое, очевидно, компенсирует невыгодные в смысле плавучести большие размеры.

Однако для преодоления сопротивления среды имеет значение не только относительная величина поверхности погруженного тела, но и его форма. Как известно, из всех геометрических тел одинакового объема наименьшую поверхность имеет шар. Несмотря на это, шарообразные формы довольно широко распространены среди планктонных организмов (некоторые зеленые водоросли, целый ряд жгутиковых, в том числе известная ночесветка-ноктилюка, радиолярия талассиколя, некоторые гребневики и др.).

Нужно думать, что в этом случае такие приспособления, как уменьшение удельного веса, пропитывание тела водой и тому подобные настолько компенсируют невыгодность шарообразной формы, что полностью исключают действие силы тяжести. Для такого организма толща воды однородна. Никакая другая среда и никакое другое местообитание, кроме толщи воды, не представляют такой равномерности во всех направлениях, поэтому и шарообразные организмы нигде, кроме толщи воды, не встречаются. Возможно, что в условиях, исключающих силу тяжести, шарообразная форма своей минимальной поверхностью может дать какие-либо преимущества.

Для увеличения плавучести особенное значение имеет увеличение так называемой лобовой поверхности, то есть той поверхности, которая при движении смещает частицы среды (в данном случае при погружении).

При ничтожном весе планктеров простое удлинение тела в направлении, перпендикулярном направлению силы тяжести, уже дает организму преимущество в отношении плавучести. Особенно такая форма выгодна тем организмам, которые обладают некоторой подвижностью. Поэтому в планктоне очень часто встречаются удлиненные, палочковидные, нитевидные или лентообразные формы как одиночных, так и колониальных организмов. Примерами может служить целый ряд зеленых водорослей, многочисленные диатомовые, некоторые радиолярии, морские стрелки (Sagitta), личинка десятиногого рачка порцелляна и другие подвижные планктеры. Понятно, еще больше увеличивают поверхность трения многочисленные шипы, выросты, направленные в разные стороны, которые мы также встречаем у многочисленных представителей самых разнообразных систематических групп, например у диатомовых хетосерос, перидиней-цератиум, корненожек глобигерина, многочисленных радиолярий, личинок морских ежей и змеезвезд (Pluteus) и, особенно, у разнообразных рачков, украшенных перистыми щетинками.

Такое же значение имеет сплющивание тела в плоскости, перпендикулярной к направлению силы тяжести, что в ходе эволюции привело к развитию лепешкообразных или дискообразных форм. Наиболее известным примером таких форм может служить широко распространенная в наших морях медуза аурелия, но такая форма встречается и среди планктеров других систематических групп. Таковы костинодискусы, лептодискусы, целый ряд радиолярий и особенно филлозома листовидная, личинка лангуста - промыслового рака Западной Европы.

Наконец, дальнейшее усовершенствование в этом направлении приводит к впячиванию нижней поверхности и развитию медузоидной, парашютообразиой формы, настолько совершенной, что она применяется в аэронавтике для замедления падения тел в воздушной среде. В качестве примеров медузоидней формы, помимо разнообразных медуз, могут быть названы отдельные представители и других групп, таких как зеленые жгутиковые - медузохлорис, головоногие моллюски - цирротаума и голотурии - пелаготурия.

Очень часто организм обладает одновременно несколькими приспособлениями, уменьшающими скорость погружения. Так, у медуз, кроме парашютообразиой формы, имеет место мощное развитие студенистой промежуточной пластинки; у некоторых радиолярий наряду с шиповатой формой находим жировые включения; у планктонных корненожек-глобигерин имеем уменьшающее остаточный вес увеличение пор и многочисленные шипы.

Все эти столь многообразные приспособления к планктонному образу жизни выработались в ходе эволюции у самых разнообразных организмов совершенно независимо от их эволюционного родства. Сама же по себе протоплазма, даже если не учитывать минеральных скелетных образований, тяжелее воды. Это обстоятельство дает нам некоторое право считать, что первичным образом жизни был бентический, а не планктический. Иными словами, жизнь первоначально была сосредоточена на дне, и только впоследствии организмы расселились и в толщу воды.

Растительная жизнь океана сосредоточена только в самом верхнем, освещенном слое воды. Казалось бы, здесь-то и должны все время находиться растениеядные планктонные организмы, чтобы быть поближе к источнику пищи. Однако на деле поведение морского зоопланктона гораздо сложнее, чем это можно предполагать. Подавляющее большинство его представителей питается водорослями только в ночное время, а днем они прячутся в темных глубинах.

В течение всего светлого дня в верхнем стометровом слое, где происходит фотосинтез, находятся почти одни водоросли. Сколько ни процеживай специальным прибором — планктонной сетью — морскую воду, в его стакане неизменно оказывается только зеленовато-бурая водорослевая взвесь. Едва солнце уходит за горизонт и в верхних слоях морской воды наступает темнота, рачки начинают усиленно работать своими антеннами и конечностями и устремляются вверх. Вместе с ними поднимаются сальпы, мальки рыб, и вся эта компания в полной темноте набрасывается на водоросли. За растениеядным планктоном следуют мелкие и крупные планктонные хищники, а за ними рыбы покрупнее. С приближением рассвета весь зоопланктон погружается в глубину, и к началу дня освещенная зона океана снова пустеет.

На заре морской биологии, когда была изобретена планктонная сеть, люди сразу обратили внимание на хорошие уловы ночью и плохие днем. Вначале предполагали, что планктонные организмы при дневном свете видят сеть и спасаются от нее бегством. Ночью же сеть не видна и потому приносит богатый улов. Конечно, рыбы, кальмары, крупные рачки, способные к активному плаванию, как правило, в планктонную сеть не попадают, так как действительно пугаются ее. Но это никак не может относиться к планктонным животным, которые пассивно передвигаются с места на место, увлекаемые течениями.

Когда реальность суточных вертикальных перемещений планктона стала очевидной, потребовалось объяснить причину этого странного явления. Вначале высказывалось предположение, что планктонные рачки, оставаясь днем в темной глубине, легче спасаются от хищников, которые на свету их легко обнаруживают. Так, многие наземные травоядные животные день проводят в спасительной гуще леса и выходят пастись лишь под покровом ночной темноты. Аналогия эта, может быть, и образная, но ни на чем не основанная.

Известен целый ряд планктонных рачков, излучающих яркий фосфоресцирующий свет. Они как будто нарочно сигнализируют хищникам о своем местонахождении, причем светятся такие рачки и днем в глубине моря, и ночью вблизи его поверхности. Кроме того, далеко не все пожиратели планктонных животных находят свою жертву с помощью зрения. Усатые киты, как известно, обнаруживают скопления пищевых объектов посредством эхолокации. Для них совершенно безразлично, освещены рачки солнцем или пребывают в темноте. Тогда была выдвинута гипотеза, согласно которой растения при фотосинтезе выделяют какие-то вещества, вредно действующие на зоопланктон. Однако после тщательных экспериментов это предположение не подтвердилось.

Оказалось также, что суточные перемещения вверх-вниз совсем не обязательно заканчиваются у поверхности моря. Имеется множество планктонных организмов, которые проводят ночь на глубине 500 — 200 метров, а днем опускаются на километр и более. Они вообще не проникают в слой, где происходит фотосинтез, и никогда не видят света, а тем не менее ежесуточно совершают значительные вертикальные перемещения.

Таким образом, создается впечатление, что каждый вид планктонных и пелагических (тоже живущих в толще воды, но способных к активному перемещению) животных обитает в пределах определенных границ глубины. Ночью они держатся вблизи нижней, а днем вблизи верхней границы, совершая в течение суток перемещения вверх и вниз. Совершенно очевидно, что в перемещениях всех этих животных главенствующую роль играет степень освещенности.

Замечено, что во время полных солнечных затмений тоже начинается подъем зоопланктона. Свет как будто отпугивает планктонных животных, а темнота притягивает. Но тогда почему же массы планктонных организмов, поднявшись ночью к поверхности океана, скапливаются в лучах ярких ламп, опущенных за борт? Почему к этому потоку света устремляются стаи рыб и кальмаров? Целесообразность таких действий никак нельзя было объяснить.

Некоторые специалисты, например, английский гидробиолог Алек Лори, пытались связать перемещения планктонных животных не со светом, а с температурой. Идея заключается в следующем. При низкой температуре жизненные процессы идут медленнее, расход энергии уменьшается. Поэтому планктон и держится в холодных глубинах, экономно расходуя питательные вещества, а ночью быстро проникает к кормовым полям, наедается и уходит обратно в прохладу. Кроме всего прочего, вязкость холодной воды выше, чем теплой. Значит, живущим в холодной зоне организмам планктона для сохранения своего положения в пространстве приходится затрачивать меньше энергии, чем если бы они жили в теплых поверхностных водах.

Может быть, А. Лори до известной степени прав, хотя изменения вязкости воды настолько незначительны, что вряд ли могут играть существенную роль в приспособлениях планктеров. Дело в том, что эта теория никак не объясняет, почему же подъем и спуск приурочены к изменению интенсивности света и совершаются в определенное время суток, а не по мере того, как планктонные организмы почувствуют голод. Стройная картина общих представлений о суточном вертикальном перемещении планктона была вконец нарушена открытием таких видов, которые день проводят у поверхности, а на ночь спускаются в глубину.

В конце концов, английский исследователь Д. Гаррис, не найдя объяснения массовым суточным перемещениям планктона, пришел к выводу, что они не имеют никакого приспособительного значения, что это побочное проявление внутреннего биологического ритма планктеров. Просто у планктонных организмов, как и у всех других растений и животных, имеются свои биологические часы, а их маятник размахивает раз в сутки на сто метров вверх и на сто метров вниз (у иных и более).

Конечно, в ряде случаев действия животных приводят к явно нецелесообразным, но отчетливо видимым результатам. Вот во время перелета с озера поднялась огромная стая птиц и на миг затмила солнце, это не приспособление для защиты от хищников, а только тень от стаи. Но ведь регулярные, строго регламентированные по времени и расстоянию перемещения огромных масс планктона не тень! Перемещаются сами организмы! Даже след не безразличен тому, кем он оставлен. По следам хищник тропит жертву. Даже тень бывает опасна. По ней враг обнаруживает того, кто ее отбрасывает. Тем более невозможно представить себе, что такие серьезные действия, как переход из холода в тепло, из глубины к поверхности и обратно, были бы безразличным побочным результатом внутреннего ритма организма. Совершенно несомненно, что эти перемещения необходимы, только мы не знаем, почему они необходимы. Пока это одна из загадок океана. Может быть, кто-то из читателей этой книги сможет ее разгадать.

Если значение вертикального перемещения планктон: а для жизни самих планктеров еще не совсем ясно, то роль этого феномена в балансе океана, как считает один из наших ведущих планктонологов, профессор Михаил Виноградов, очевидна. Регулярное движение планктона вверх-вниз приводит к соприкосновению обитателей разных глубин, ускоряет процесс перехода органических веществ от места их синтеза (у поверхности океана) к месту основного потребления (в глубинах и на дне), объединяет обитателей водной толщи и дна в единое сообщество.

Как узнать, где птицы провели зиму? Как изучить пути, по которым они летели?

Веками европейцы и не подозревали о дальних перелетах птиц и были убеждены, что зимой они прячутся в укромные и недоступные места, где проводят неблагоприятные дни в состоянии летаргии. Это мнение существовало до XVIII века.

Даже великий шведский натуралист Карл Линней писал: «Каждую осень, когда начинает холодать, ласточки ищут убежище в тростниках рек и озер». Позднее ученые открыли перелетные пути различных видов птиц и нанесли их на карту земного шара. И помогли ученым в этом легкие кольца, надеваемые на лапки птиц.

Идея кольцевания птиц родилась в 1899 году. Она по праву принадлежит датскому учителю Мартенсену. Он первым начал кольцевать птиц, чтобы узнать, далеко ли они улетают. Мартенсен надел на ноги 102 различным птицам легкие алюминиевые кольца, на которых выгравировал свой адрес. Каждое кольцо имело свой порядковый номер, по которому можно было уточнить, какой птице, какого числа и где оно было надето.

Из 102 птиц, окольцованных Мартенсеном, 9 были убиты в следующем году в Западной Европе. Идея такой своеобразной «паспортизации» птиц была принята учеными всего мира. Так было положено начало научному кольцеванию птиц. Сейчас почти во всех странах мира созданы специальные центры кольцевания птиц.

Впрочем, еще в 1740 году итальянский ученый Спаланцани «кольцевал» птиц, завязывая на их ногах красные ленточки. Сейчас кольцевание птиц в разных институтах ведется по методу Мартенсена. На ножку пойманной живой птицы надевают кольцо с наименованием и адресом учреждения, ведущего кольцевание, и порядковым номером птицы. Чаще всего кольца надевают на ножки птенцов, которые еще не научились летать. В специальный дневник записывают вид птицы, номер кольца, дату и место, где оно было надето.

Окольцованные птицы нередко попадают в руки людей, чаще всего охотников и любителей природы. Блестящее колечко сразу бросается в глаза, и в адрес центра кольцевания поступают сообщения о поимке птицы, а если она убита, то туда отправляют кольцо, которое кладут в обычный конверт вместе с информацией о времени, месте и обстоятельствах добычи птицы.

Допустим, кольцо было надето птенцу аиста в Болгарии, а затем его получили из Египта. Значит, аист улетел зимовать в Африку. Следом мы получаем второе письмо с подобным кольцом с другого аиста, окольцованного тоже в Болгарии. На этот раз кольцо сняли в Экваториальной Африке. Выходит, что он пролетел над Египтом и продолжил свой путь.

Этот способ помог бесспорно установить, что аисты зимуют за тысячи километров от родных мест, на юге Африки. Таким же способом узнали, что наши ласточки зимуют южнее экватора, от Танзании до Гвинеи. И наша кукушка, оказывается, большая путешественница — она навещает зимой арабские страны и оазисы Сахары, джунгли Судана и даже достигает Мозамбика.

Благодаря кольцеванию мы знаем, что некоторые виды пернатых возвращаются весной в те гнезда, в которых провели прошлый год, например, аисты, ласточки, скворцы и другие птицы. Выходит, каждое маленькое кольцо, надетое на ножку птицы, — это ценный научный документ. Он рассказывает нам о пути, по которому передвигаются наши крылатые друзья. Во многих странах каждый год окольцовывают сотни и тысячи птиц.

Характер, сроки и пути косяков рыб изучаются при помощи наблюдений с суши, с кораблей и самолетов. Но основной метод изучения миграции рыб — маркирование. Он обеспечивает наилучшие результаты. Изучением биологии рыб, включая и их миграции, занимаются ученые многих специальных научных институтов во всем мире. Поданным Международного совета по изучению морей, в Копенгагене за период 1925—1951 годов учеными различных стран маркировано более 5 миллионов рыб, в основном мигрирующих видов.

Обычно марка крепится к телу рыбы иглой с нейлоновой ниткой и специальными зажимами. Закрепляется она возле спинного плавника. На марке, как и на кольце, обозначается адрес научного института, который маркировал рыбу, и соответствующий номер. Данные о маркировании рыбы заносятся в соответствующий дневник.

В последнее время практикуется маркирование рыб гидростатическими марками, которые представляют собой прозрачные пластмассовые трубочки. В них вкладывается записка, где отмечены следующие данные: адрес, по которому следует отправить найденную записку, и сведения о дате и месте лова рыбы. На свету на прозрачном целлулоиде можно прочесть: «Отрежь края, письмо внутри». Текст записки пишется на нескольких языках.

При помощи маркирования были собраны сведения о миграции китов. Первые же представления об их путях были получены при непосредственном наблюдении с берега и с китобойных кораблей. Успех китобойного промысла стоит в прямой зависимости от миграции китов, от знания, где и в какое время они находятся. Миграционные путешествия сказываются на количестве подкожного жира.

Когда киты отправляются осенью из районов питания в районы размножения, слой жира у животных достигает наибольшей толщины, весной же, при возвращении, он становится очень тонким. Наиболее полные сведения о биологии китов были получены при помощи маркирования. Китов маркируют различными видами бирок, стреляя ими в подкожный жировой слой из гарпунного оружия.

Ученые ряда стран много сил отдали исследованию миграций бабочек. В начале XX столетия американские энтомологи взялись изучать перелет бабочки-монарха — классической путешественницы. Вскоре перелеты бабочек начали изучать в Европе. В некоторых странах созданы специальные энтомологические станции для изучения их маршрутов.

Главным средством изучения стало маркирование: к крылу бабочки прикрепляется совсем тоненькая и легкая пластиночка из алюминия, которая блестит на солнце, привлекая внимание. Полету она не мешает. На микроскопической этикетке обозначен адрес станции или исследователя. Западногерманский энтомолог Герберт Рер пометил таким способом 60 000 капустниц. От выпущенных бабочек Рер получил обратно около 20 пластинок, одна из которых была найдена на расстоянии 80 км от места выпуска.

Сегодня применяются и новейшие способы маркирования. Например, рыб маркируют радиоактивными изотопами. Современная техника дает все больше средств, при помощи которых можно проследить пути мигрирующих животных. Чтобы установить миграционный путь морских черепах, которые проплывают тысячи километров до мест размножения, ученые прибегли к оригинальному способу мечения.

На спину огромной черепахи весом 150 кг поставили специальный радиопередатчик, сигналы которого давали возможность проследить ее маршрут по океану. Сегодня и на некоторых орнитологических станциях вместо кольца укрепляют на спину птице миниатюрный радиопередатчик, при помощи которого определяют, где она находится.

В последнее время в некоторых странах изучают маршруты перелетных птиц с помощью радаров. Наблюдения за перелетными птицами ведутся тем же способом, что и за самолетами. Радарный экран отмечает летящих птиц, пространство, в котором они находятся, и направление полета. Крупные птицы предстают на экране как маленькие светлые точки, а маленькие заметны, только когда их много.

При помощи радара наблюдениями можно охватить достаточно большие пространства и огромные количества перелетных птиц. Изучение радарных снимков показало, что птицы пролетают над огромными пространствами и не по твердо заданному пути, а по очень широкому фронту. Исключение составляют белые аисты и некоторые хищные птицы, перелетающие через строго определенные места и использующие при этом, как предполагают ученые, восходящие воздушные течения, которые облегчают полет.

При помощи радара собрано много ценных данных, свидетельствующих о том, что перелетные птицы днем ориентируются по солнцу, а ночью по звездам. При большой облачности они зачастую начинают метаться, кружить, менять направление, бывает, сбиваются с курса, но как только звезды снова становятся видны, способность птиц к ориентации тут же восстанавливается, и они снова берут правильный курс. Так что аппараты, обслуживающие на земле военную и гражданскую авиацию, помогают и орнитологам.

Изучение случайных и периодических странствований крылатых представляет не только теоретический, познавательный интерес для специалистов, но имеет и огромное народнохозяйственное значение. Например, изучение массового перелета саранчи и других насекомых-вредителей уже давно поставлено на строго научную основу. В Лондоне создан специальный научно-исследовательский институт, изучающий вопросы, связанные с перелетами саранчи.

ПОДВОДНЫЕ ПУТЕШЕСТВЕННИКИ

Низшие представители животного мира также подвержены регулярным перемещениям, которые сходны с миграциями высших организмов. Различают два вида перемещений планктона: горизонтальные и вертикальные.

Горизонтальное передвижение зоо- и фитопланктонных организмов называют еще пассивной миграцией. Из-за ограниченной возможности передвижения планктонные организмы путешествуют часто не по своей воле, а бывают увлечены различными водными течениями.

Планктонные организмы образуют скопления общим весом до нескольких миллионов тонн. Иногда они передвигаются на сотни и тысячи километров; скорость, с которой течение увлекает водные организмы, порой очень велика. Например, некоторые экваториальные течения имеют среднюю скорость около 100 км в сутки, а скорость атлантического течения Гольфстрим около 250 км в сутки! Пешеход бы за ним не угнался.

Вертикальные перемещения планктонных организмов носят активный характер и иногда достигают расстояния до 500 м. Если сравнить это расстояние с миниатюрными размерами самих организмов, то вертикальные миграции представляют собой поистине дальние путешествия. В различных стадиях своего развития планктонные организмы обитают на разных глубинах водного бассейна. Взрослые формы населяют в основном глубины моря, а яйца и организмы в ранней стадии развития обживают поверхностные слои. На различных глубинах обитают также некоторые мужские и женские особи одного и того же вида.

Перемещения простейших организмов находятся в тесной взаимосвязи с их циклами размножения. Очень интересны в этом отношении морские черви палоло из группы нереид, которые в определенное время, связанное с фазами Луны, выходят в верхние слои воды для размножения. Эти черви встречаются в несметных количествах в Тихом океане около островов Самоа, Фиджи и Тонга Полинезийской группы. Обычно они обитают в трещинах коралловых рифов, делая ходы в коралловых образованиях.

Осенью (в октябре — ноябре), через неделю после полнолуния они выплывают на поверхность моря. В это время на заднем конце тела самок можно видеть мешок, полный яиц коричневого цвета; мужские половые продукты зеленые. Созревшие яйца, оторвавшись от материнского организма, свободно плавают. Их оплодотворение совершается пассивно, по воле волн. Передние части тела червей (красного цвета) остаются в воде, они обладают способностью к регенерации — восстановлению утраченных частей тела.

Жители островов ценят палоло как особое лакомство. Островитяне знают время, в которое палоло появятся на поверхности океана, с точностью до одного дня. В это время они выходят в море на своих выдолбленных из дерева лодках, еще до восхода солнца останавливаются около рифов и терпеливо ждут с сетками в руках появления морских червей.

Обычно выход червей на поверхность длится два часа, затем мешки самок лопаются, и половые продукты выплывают наружу. В часы, когда появляются палоло, море на огромных участках буквально кишит от их бессчетного множества, становясь темно-зеленым. В продолжение целой недели туземцы пируют: едят червей сырыми или готовят из них вкусные и питательные блюда.

Большое значение для вертикального распределения жизни в водоемах имеет свет, а также температура и давление воды. И все же распределение зоопланктона на разных глубинах моря — не постоянное явление, в различные части суток оно изменяется вследствие вертикальной миграции организмов. Амплитуда передвижений у различных организмов обычно варьирует от 200 до 300 м.

Научными исследованиями установлено, что главная причина, которая заставляет их совершать в течение одних суток такие продолжительные путешествия, связана с питанием. Поверхностные слои воды, особенно до глубины 25 см, густо населены различными видами бактерий, фитопланктоном и другими микроскопическими организмами — основной пищей зоопланктона.

Большинство планктонных животных ночью поднимается к поверхности воды, а днем уходит в глубины водных слоев, хотя пищи наверху хватает. Причина этого изучена недостаточно, вероятнее всего, в глубоких и темных слоях животные спасаются от врагов.

Кроме суточных, часть планктона совершает и сезонные миграции. Например, морское ракообразное каланус финмархикус проводит несколько месяцев на глубине, а в остальное время поднимается и живет в верхних слоях моря. Предполагают, что это связано с изменением интенсивности света и температуры. Исследованиями установлено, что некоторые морские организмы, которые не могут переносить высокие температуры в поверхностных слоях моря, регулярно совершают сезонные миграции, придерживаясь летом прохладных глубоких слоев, а осенью и зимой — поверхностных. Некоторые виды могут совершать и суточные, и сезонные миграции.

Из морских беспозвоночных мигрируют и некоторые мягкотелые и иглокожие, которые с приближением весны приходят к прибрежной полосе, где откладывают яйца. Преследуя мигрирующие рыбные стада в продолжение 4 месяцев, тихоокеанский кальмар, например, проходит расстояние до 8000 км.

Одним из удивительных явлений живой природы является, бесспорно, массовое странствование рыб. И действительно, трудно себе представить, как в строго определенный, словно «назначенный» час сотни тысяч и даже миллионы рыб одного вида покидают бессчетными стадами широкие океанские просторы и трогаются в далекий и гибельный путь.

Более 2000 км нужно пройти навстречу течению реки, преодолеть бесчисленные опасные пороги и водопады, чтобы достигнуть места, где можно выметать икру. Никто не покажет им путь, который они должны пройти один раз в своей жизни. И все же рыбы безошибочно достигают родных мест, где мечут икру и умирают. Разумеется, путешествуют не все рыбы. Оказывается, есть и такие виды, которые никогда не покидают родные водоемы, какими бы маленькими они ни были.

У рыб, как у планктонных животных, различают два вида миграции: пассивную и активную. Рыбные мальки, например, никогда не двигаются против течения, так как слишком слабы, чтобы его преодолеть. Поэтому икра, мальки и молодь переносятся на близкие или далекие расстояния различными водными течениями. Пассивная миграция наблюдается у молоди океанской сельди.

Каждую весну взрослые рыбы, обитающие в северных районах Атлантического океана, направляются к берегам Норвегии, где мечут икру. Морское течение относит вылупившихся мальков к берегам Скандинавского полуострова, на расстояние 800—1000 км от места рождения. Аналогичные миграции совершают и мальки сельди, вылупившиеся в районе мурманского побережья.

Личинки угрей — лептоцефалы, ничтожные по размерам и почти лишенные органов активного движения, совершают одну из самых грандиозных пассивных миграций. Они проходят 7—8 тыс. км от Саргассова моря, где выводятся, до берегов Европы, увлекаемые мощным движением Гольф-стрима. Есть много и активно мигрирующих. Они странствуют самостоятельно, но придерживаясь определенного направления, связанного с размножением, питанием и зимовками. Рыбы предпринимают и случайные миграции, например, при внезапно изменяющихся условиях.

В некоторых случаях мигрирующие рыбы проходят более 2000 км, а нерка, например, предпринимает странствование в верховье реки Юкон на Аляске, преодолевая 3600 км, причем со скоростью 30—40 км в сутки. Иногда такие путешествия продолжаются целые месяцы. Каспийская белуга проходит от Каспийского моря до верховий реки Уфимки 2950 км. Каспийские осетры, место нереста которых находится в верховьях Камы, проплывают 2500 км.

Некоторых рыб, особенно тихоокеанских лососей, продолжительное странствование так истощает, что после нереста они почти не способны активно двигаться. Встает вопрос, что же рационального в этих далеких миграциях рыб? На этот вопрос наука все еще не дала полного и исчерпывающего ответа. И все же можно сказать, что, умирая, рыбы обеспечивают хорошие условия малькам, которые вылупятся из оплодотворенной икры. Родители умирают ради жизни своего потомства.

Среди многочисленных видов рыб самые далекие путешествия предпринимает европейский речной угорь. Эта рыба рождается в глубине океана и вскоре уходит в пресноводные бассейны — в реки и озера. Когда же наступает половая зрелость (примерно в 8—12-летнем возрасте), она вновь начинает неудержимо стремиться в море, преодолевая от 7 до 8 тыс. км; уходит сначала в Атлантический океан, затем в Саргассово море, где на глубине около 1000 м мечет икру и там же, где родилась, умирает от истощения.

ЗЕМНОВОДНЫЕ И ПРЕСМЫКАЮЩИЕСЯ СТРАНСТВУЮТ

Интересные наблюдения миграции некоторых земноводных сделал биолог В. Бешков, научный сотрудник зоологического института Болгарской академии наук. При помощи маркирования он установил, что травяная лягушка в поисках подходящего для зимовки места прошла 120 км. Он наблюдал, как лягушки этого вида совершали миграции с целью размножения на расстояние 60—70 м от берега реки Искер, так как им не хватало удобных для размножения мест.

В процессе исследований биологии и поведения различных видов земноводных Бешков установил, что длительные миграции к местам размножения совершает и серая жаба. Он наблюдал перемещения жаб из низменных районов Витоша (лес у Баяна) почти до района Вазов в Софии.

Жабы идут к местам икрометания в период с 1 по 15 апреля и остаются там 15 дней, после чего возвращаются в леса Баяна. Бешков наблюдал также жаб этого вида, уходящих весной с возвышенных мест Накатника (скалистая и безводная местность) к реке Прибойнице, чтобы отложить там икру. Серые жабы предпринимают вертикальные миграции на расстояние до 300 м. После размножения они вновь возвращаются туда, откуда пришли.

Вылупившихся в лесу около Прибойницы жаб Бешков находил вблизи скал в начале октября. Но жабы совершают передвижения не только на короткие расстояния. Известны случаи, когда они путешествовали в продолжение недели, чтобы достигнуть болота или лужи, в которой откладывали икру. Путешествуют эти земноводные только ночью, а днем спят. Безошибочный инстинкт всегда подсказывает им верный путь, они никогда не сбиваются с пути к водоему, к которому направляются.

Среди земноводных миграции на короткое расстояние совершают и некоторые виды тритонов. Нахождение тритонов на расстоянии километра от водоема — не редкость.

Путешествия к местам зимовки предпринимают и пресмыкающиеся. Например, некоторые гадюки ползут больше километра, чтобы добраться до удобного места в корнях сухого дерева или в каком-нибудь карьере, где они скапливаются во множестве. И крокодилы странствуют из одного водоема в другой. Известны случаи, когда густонаселенное болото в Индии в одну ночь было покинуто опасными обитателями, так как обмелело.

Крокодилы ползли, не разбирая дороги, через заросли и поле, даже попали в одно селение, где разбрелись по улицам, заползли во дворы, а некоторые забрались в колодцы, приведя в ужас население: утром люди на каждом шагу натыкались на страшных пришельцев. В следующую ночь крокодилы покинули село, продолжив путь.

Дальние миграции предпринимают гигантские морские черепахи, которые в продолжение тысячелетий откладывают яйца в прибрежный песок на определенных островках. Зеленой бразильской черепахе, например, нужно преодолеть около 2500 км, чтобы достигнуть острова Асунсьон, где она откладывает яйца. Продолжительные странствия к местам размножения предпринимают и другие морские черепахи — ридлея, распространенные в Атлантическом океане от Канады до Карибского моря.

Миграции этих черепах долгое время оставались загадкой для ученых. Только в 1947 году было установлено, что каждый год в апреле — мае и до начала июня около 40 тыс. черепах этого вида плывут с разных сторон безбрежного океана к своему излюбленному пляжу, чтобы отложить яйца.

СКИТАЛЬЦЫ НЕБЕСНЫХ ПРОСТОРОВ

Всем известна точность, с которой перелетные птицы покидают осенью родные места, отправляясь на юг, а весной возвращаются домой, чтобы отложить яйца и вывести потомство. Эта ритмичность настолько строго соблюдается различными видами птиц, что в Индии, например, в древности некоторые месяцы года даже получили название от определенных видов перелетных птиц.

Птицы, бесспорно, являются рекордсменами в животном мире, так как совершают самые далекие путешествия. Абсолютный рекорд принадлежит полярной крачке, которая каждый год преодолевает путь от Арктики до Антарктиды и обратно!

Известный американский орнитолог Дж. Одюбон подробно описал свои наблюдения за стаей странствующих голубей, которая пролетала через штат Огайо осенью 1813 года. Он подсчитал, что стая насчитывала более 1,1 млрд голубей. Трудно было бы этому поверить, если бы не было бы других свидетельств. Александр Уилеен, наблюдавший в 1832 году стаю странствующих голубей в штате Кентукки, утверждал, что ее численность определялась в 2 230 270 000 особей.

Оставим на совести очевидца столь точную цифру, но не это главное. К сожалению, человеческая алчность стала причиной того, что этих птиц, стаи которых достигал и такой астрономической численности, больше не существует. Они были варварски истреблены в XIX столетии из-за вкусного мяса. Последняя птица этого вида погибла в 1914 году в зоологическом саду в Цинциннати.

С какой же скоростью летят мигрирующие птицы? Дикие утки, например, — со средней скоростью 70—80 км/ч, ласточки — 55—60 км/ч; имеется также малоправдоподобное сообщение, что горихвостка, окольцованная в Англии, через 24 ч была поймана в США, пролетев за сутки 3500 км. Необходимо отметить, что большое влияние на скорость полета оказывает направление ветра.

Птица, которая в безветренное время летит со скоростью 40 км/ч, а при попутном ветре 50 км/ч, при встречном значительно снижает скорость. Особенно снижает скорость полета порывистый ветер. Высота, на которой летят мигрирующие стаи птиц, тоже различна. Например, маленькие певчие птицы летят обычно не более чем в 100 м от поверхности земли; скворцы, вороны, дрозды предпочитают высоту в 150—500 м, а аисты 900—1300 м.

Многие птицы достигают такой высоты, где человек не мог бы находиться без кислородного аппарата. Это касается тех видов птиц, которые при миграциях вынуждены преодолевать высокие горные массивы. Над Гималаями наблюдали и сфотографировали мелких птиц, летящих из Индии в Сибирь. А английский наблюдатель Харисен сфотографировал с самолета стаю диких гусей, пролетавших над Гималаями на высоте 9500 м. Большинство же перелетных птиц обходят горные массивы, придерживаясь речных долин и ущелий.

Миграции наблюдаются и у некоторых видов нелетающих птиц. Пингвины, например, иногда преодолевают расстояние до 2000 км, передвигаясь «пешком», скользя на животе по заледенелым холмистым участкам или вплавь по океану. С наступлением зимы со всех концов Антарктиды они трогаются на север, иногда достигая южных берегов Африки и Южной Америки.

Некоторые представители группы бегающих птиц, например страусы, покрывают «пешком» расстояние в 1000 км, двигаясь в точно определенном направлении.

Нужно отметить, что разные птицы совершают перелеты в разное время суток. Дневные хищники и ряд других пернатых летят исключительно днем, некоторые болотные и водоплавающие птицы — в любое время суток. Многие мигрирующие птицы во время полета соблюдают определенный «строй», например, журавли летят клином, гуси вереницей, а мелкие птицы широко развернутой стаей. Одни птицы совершают полеты в полном молчании, другие (журавли, лебеди, дикие утки и многие другие) издают характерные звуки, которые служат, по-видимому, для передачи различной информации.

Странствование птиц — явление, на которое люди обратили внимание много лет тому назад. Известно, что различные предания Древней Эллады и Рима связаны с птицами и их перелетами, об этом упоминается и в древнеегипетских легендах. В дошедшем до нас древнем гимне «Славословие Нилу» встречаются такие слова: «Над тобой птицы летят на юг, они тебя охраняют от знойного ветра...»

Об этом же говорится в книге библейских пророков Иова и Иеремии. Аристотель, величайший ученый-энциклопедист и философ-натуралист Древней Греции, в своем многотомнике «История животных» тоже отвел большое место птицам. В ней наряду с наивными и ошибочными представлениями много и точных сведений об их перелетах. Тысячелетиями люди собирали данные о перелетах птиц, однако до настоящего времени это явление изучено далеко не полностью.

По времени отлета птицы делятся натри основные группы. Первая — это птицы, которые начинают готовиться к отлету задолго до наступления неблагоприятного периода. Кукушка, например, улетает из нашей страны в конце июля или начале августа, когда еще много пищи и тепло.

Сравнительно рано улетают аисты и ласточки. Птицы, которые входят во вторую группу, улетают вслед за появлением первых признаков изменения погоды, т.е. при снижении температуры воздуха и уменьшении количества пищи. Среди таких птиц много насекомоядных: скворцы, славки и др. К третьей группе причисляют птиц, которые улетают поздней осенью, когда условия жизни становятся для них невыносимыми, например, диких уток и гусей.

Однако иногда не все птицы одного и того же вида и даже не все индивиды одной и той же популяции мигрируют. Одни улетают, а другие остаются в пределах гнездовых ареалов. «Всемогущий» перелетный инстинкт на них не действует. В городах в теплые зимы, возле мусорных контейнеров, можно видеть оставшихся зимовать грачей.

Все еще не разрешены полностью вопросы, связанные с навигацией и ориентацией птиц при полете. Тем не менее данные наблюдений и экспериментов позволяют утверждать, что главную роль в ориентации птиц играет их зрение, которое хорошо развито у всех пернатых.

Большое значение для ориентации птиц имеют не только земные, но и небесные ориентиры: при дневном полете — солнце, при ночном — луна и звезды. Установлено также, что при ночных перелетах птицы ориентируются в основном по Полярной звезде. Некоторые исследователи придерживаются мнения, что при дальних перелетах птицы руководствуются магнитным полем Земли.

ПУТЕШЕСТВУЮЩИЕ МЛЕКОПИТАЮЩИЕ

Миграции, наблюдающиеся у млекопитающих, бывают двух видов: непериодические и периодические. Непериодические миграции часто связаны с недостатком пищи или с перенаселенностью района их обитания. Поведение животных меняется, и, в конце концов, они покидают обжитой район, т.е. мигрируют.

Характерный пример массовой миграции — грандиозные переселения мышевидных грызунов в так называемые «мышиные годы». Например, в 1727 году бесчисленные полчища крыс из казахских степей пересекли Волгу. В последующие годы зверьки заселили всю Европу, распространяя болезни и нанося ущерб населению. Подобные странствия время от времени предпринимают и другие мышевидные грызуны — различные виды полевых мышей, водяные крысы, лемминги и многие другие.

Классический пример стихийных и нерегулярных миграций представляют перемещения леммингов. Эти зверьки достигают в длину 15 см, а обитают они в Азии, Европе, Америке. На Европейском континенте встречаются в основном на Скандинавском и Кольском полуостровах. Периодически собираясь в несметных количествах, лемминги покидают районы своего обитания и огромным живым потоком перемещаются по тундре, как бы стремясь достигнуть линии горизонта.

Иногда они уходят за сотни километров от родных мест. За леммингами следуют волки и лисицы, которые в этот период питаются исключительно ими. Зверьки могут стать добычей и рысей, медведей, росомах, песцов, а также домашних кошек и собак. Во время передвижения над ними кружатся совы, вороны, канюки, чайки и другие пернатые, которых привлекает легкая и вкусная добыча. Но ничто не может остановить леммингов в их стихийном движении вперед: ни враги, которые во множестве уничтожают их, ни реки и горы.

Отправляясь в этот поход, зверьки обрекают себя на своеобразное самоубийство. Достигнув морского берега, они не останавливаются, не возвращаются обратно, а в каком-то необъяснимом ослеплении кидаются в пенящиеся воды прибоя. Вероятность спасения ничтожна. Лишь незначительная часть леммингов проявляет «благоразумие» и, очутившись на берегу, трогается дальше по его краю, пока не найдет подходящее для себя место.

Основная причина массовых странствований леммингов — сильное увеличение их численности. Установлено, что в некоторые годы эти зверьки плодятся особенно интенсивно: вместо двух раз в год самки приносят потомство три, а иногда и четыре раза. При этом и число малышей в помете бывает больше, чем обычно. Как следствие этого возникает «охота к перемене мест». Известно, что мигрирующие группы леммингов состоят в основном из молодых животных, но только 20 % из них достигает половой зрелости.

Миграция антилоп гну в Африке


Некоторые зоологи полагают, что у леммингов существует врожденный миграционный инстинкт, но он проявляется только в годы, когда налицо упомянутые выше условия.

Массовые непериодические странствования предпринимают и белки. Обычно эти симпатичные животные не склонны к далеким передвижениям, но при недостатке пищи они массово, тысячами особей, покидают районы постоянного обитания и переселяются на сотни и тысячи километров от него. При этих стихийных переселениях пугливые обычно белки не останавливаются ни перед какими препятствиями.

Поодиночке или группами зверьки стремглав перелетают с дерева на дерево, перемещаясь из одного леса в другой, переплывают реки и озера, минуют села и города. Без остановки движутся они вперед и вперед, пока не достигнут леса, где много пищи, не пугаясь ни людей, ни животных-врагов.

Передвигаются белки со скоростью 3—4 км/ч, однако общая скорость передвижения зависит и от числа переселяющихся животных. Чем многочисленнее скопление мигрирующих белок, тем быстрее они движутся вперед, так как за короткое время уничтожают по пути запасы пищи и им необходимо скорее найти новые корма. При переселении белки не придерживаются общей группы, как некоторые другие млекопитающие (северные олени, бизоны, лемминги и др.). И хотя они путешествуют в одном направлении, но часто не видят друг друга. Брем описал случай, когда в 1896 году огромное скопление белок двигалось через Нижний Тагил (Урал).

Основная масса переселяющихся зверьков прошла в 8 км от города, причем фланговые отряды этой «армии» отстояли на 16 км один от другого. Одна часть белок прошла через город; зверьки бесстрашно скакали по улицам, забегали во дворы, вскакивали через окна в комнаты, лазали по деревьям и крышам. Собаки с остервенением давили зверьков, люди убивали их, однако белки не отклонялись от выбранного пути, неудержимо двигаясь вперед.

Трое суток продолжалось шествие. Даже бурная и широкая река Чусовая не остановила животных-переселенцев. Белки бесстрашно входили в холодные и бурные воды и переплывали на противоположный берег. «Нет прекраснее зрелища, — писал известный исследователь Сибири Мидендорф, — чем флотилия белок, переплывающих широкую реку.

Их торчащие из воды хвосты подобны корабельным парусам». Путешествие белок, о котором писал Брем, продолжалось до тех пор, пока животные не попали в лес, где хватало для всех пищи. Иногда фронт, которым движутся белки, достигает 300 км, а численность мигрирующих животных определяется десятками, а порой и сотнями тысяч особей.

Массовые миграции предпринимают и песцы. Инстинкт пробуждается у них осенью — тоже в связи с увеличением численности животных в данном районе и возрастающим недостатком пищи. Путем мече-ния отдельных особей установлено, что некоторые песцы мигрируют на расстояние до 2000 км от места маркирования. Зачастую во время этих странствий звери попадают на дрейфующие льды Северного Ледовитого океана и достигают самых отдаленных от континента островов.

Непериодические миграции совершают и всем известные суслики. В районе, где появляются эти зверьки, они становятся опасными вредителями полевых культур. В середине XIX столетия в области Шлезвиг (Германия) совсем не было этих грызунов. Они появились там неизвестно откуда, в большом количестве, и быстро стали бичом земледельческого хозяйства в области.

Из всех представителей животного мира самые значительные горизонтальные миграции совершают морские млекопитающие, главным образом киты, тюлени и морские котики. Передвижения китов и ластоногих определяются особенностями их питания, а у некоторых видов они связаны с особенностями размножения.

Миграции разных видов китов имеют различный характер. У китов, обитающих в северных морях, они очень ограниченны. Виды, придерживающиеся заливов и прибрежных зон, мигрируют преимущественно в северном и южном направлениях, причем животные редко уходят в открытое море.

Киты, которые обитают в открытых морских пространствах, передвигаются во время миграций в строго определенном круговом направлении, придерживаясь преимущественно океанского течения. В начале лета эти животные держат путь на север, а в начале зимы (при наступлении больших холодов и при скоплении льдов в северных морях) трогаются в обратном направлении, к югу, минуя экватор.

Однако не все киты мигрируют в строго определенные сезоны года. Наибольшую точность соблюдают лишь горбатые киты. Представители усатых китов Южного полушария отправляются летом на юг, в холодные воды Антарктики, богатые в это время пищей, а зимой возвращаются на север, в теплые тропические и субтропические воды. Здесь они питаются скудно или вообще не принимают пищи.

Дальние путешествия совершает синий кит, самое крупное животное Земли. Известен случай, когда синие киты проплыли за 32 дня около 500 км, в другом случае за 88 дней около 800 км. Зафиксированное рекордное расстояние от места маркирования для синего кита — 1600 км.

Регулярные сезонные миграции совершает малый полосатик. Он проводит зиму в северных водах Атлантического океана, а весной отправляется в дальние странствия, доходя до Шпицбергена и Баренцева моря.

Самки некоторых видов китов проникают через Гибралтарский пролив в Средиземное море. По сообщению зоолога П.У. Пузанова, в 1880 году один из китов проник через Босфор и Дарданеллы в Черное море, сев на мель в мелководье около Батуми. Его скелет и сейчас хранится в Тбилисском музее.

Регулярные сезонные миграции порой на тысячи километров характерны и для многих ластоногих. Один из скитальцев этого отряда животных — гренландский тюлень. Летом эти животные передвигаются в районы плавающих льдов западных областей Северного Ледовитого океана, где усиленно питаются, а зимой заходят далеко на юг — до горла Белого моря.

Здесь тюлени появляются в огромных количествах, образуя три обособленных стада — ньюфаундлендское, янмайенское и беломорское, насчитывающие сотни тысяч и даже миллионы животных. Здесь же тюлени рожают и выхаживают малышей, линяют. Позднее они вместе возвращаются в арктические воды океана.

Интересно отметить, что упомянутые стада гренландских тюленей не только держатся в различных районах, но и не смешиваются во время миграций. За долгие годы наблюдений и мечения большого числа особей норвежские исследователи установили, что существует частичный обмен особями только ян-майенского и беломорского стад.

Далекие сезонные миграции совершают морские котики. Летом они собираются тысячами особей в северной части Тихого океана, преимущественно на острове Прибылова и Командорских островах. Старые самцы приплывают сюда в начале мая, на несколько недель раньше самок.

Здесь котики размножаются и держатся до конца августа. Осенью стадо с Командорских островов уплывает в Японское море, а прибыловское зимует у берегов Южной Калифорнии. Самки, в отличие от самцов, зимуют в более южных районах и при миграции проплывают огромные расстояния — до 5000 км.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш бизнес - От идеи до реализации