Ваш бизнес - От идеи до реализации

Рассмотрим многоканальную СМО, на вход которой поступает пуассоновский поток заявок с интенсивностью, а интенсивность обслуживания каждого канала составляет, максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.

Все каналы свободны, ;

Занят только один канал (любой), ;

  • - заняты только два канала (любых), ;
  • - заняты все каналов, .

Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым, определяя дальнейшие состояние системы:

Заняты все каналов и одна заявка стоит в очереди,

Заняты все каналов и две заявки стоят в очереди,

Заняты все каналов и все мест в очереди,

Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью, тогда как по условию в обслуживании этих заявок принимают участие одинаковых каналов с интенсивностью потока обслуживания равного для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния, когда все n каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более увеличивается, так как она уже достигла максимального значения, равного.

Запишем выражения для предельных вероятностей состояний:

Выражение для можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем:

Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее требований, т.е. когда в системе будет находиться требований.

Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей

Поэтому вероятность образования очереди равна:

Вероятность отказа в обслуживании наступает тогда, когда все каналов и все мест в очереди заняты:

Относительная пропускная способность будет равна:

Абсолютная пропускная способность -

Среднее число занятых каналов -

Среднее число простаивающих каналов -

Коэффициент занятости (использования) каналов -

Коэффициент простоя каналов -

Среднее число заявок, находящихся в очередях -

В случае если, эта формула принимает другой вид -

Среднее время ожидания в очереди определяется формулами Литтла -

Имеется n-канальная СМО с неограниченной очередью. Она характеризуется следующими показателями :

Предельные вероятности:

, , . . . , , ,…, ,… (10)

Вероятность того, что заявка окажется в очереди:

(11)

(13)

Среднее время нахождения в очереди:

(15)

Среднее время нахождения заявки в очереди:

Рассмотрим пример решения задачи многоканальной СМО с ожиданием.

Задача . В магазине к кассам поступает поток покупателей с интенсивностью 81 человек в час. Средняя продолжительность обслуживания кассиром одного покупателя tобсл = 2 мин. Определить предельные вероятности состояний и характеристики обслуживания узла расчета.

По условию λ=81(чел./час)= 81/60=1,35 (чел./мин.). По формулам (1, 2):

= λ/μ= λ * tобсл = 1,35 * 2 = 2,7

<1, т.е. при n > = 2,7. Таким образом, минимальное количество кассиров n =3.

Найдем характеристики обслуживания СМО при n=3.

Вероятность того, что в кассах отсутствуют покупатели, по формуле (9):

= (1+2,7+2,7 /2!+2,7 /3!+2,7 /3!(3-2,7)) = 0,025

В среднем 2,5 % времени кассиры будут простаивать.

Вероятность того, что в кассах будет очередь, определим по формуле (11):

P = (2,7 /3!(3-2,7))0,025 = 0,735

Среднее число покупателей, находящихся в очереди рассчитывается по формуле (13):

L = (2,7 /(3*3!(1-2,7/3) ))*0,025 = 7,35 (чел.)

T =7,35/1,35 = 5,44 (мин.)

Определим среднее число покупателей в кассах по формуле (15):

L =7,35+2,7=10,05 (чел.)

Среднее время нахождения покупателей в кассах находится по формуле (16):

T =10,05/1,35=7,44 (мин)

Среднее число кассиров, занятых обслуживанием покупателей, по формуле (12) =2,7.

Коэффициент (доля) занятых обслуживанием кассиров вычисляется по следующей формуле:

Абсолютная пропускная способность узла расчета A=1,35 (чел./мин), или 81 (чел./час), т.е. 81 покупатель в час. Анализ характеристик обслуживания свидетельствует о значительной перегрузке касс при наличии трех кассиров.

Системы массового обслуживания с ограниченной очередью

Имеется n-канальная СМО с ограниченной очередью. Число заявок в очереди ограничено числом m. Если заявка поступает в момент, когда в очереди уже m заявок, она не обслуживается. Такая СМО характеризуется следующими показателями :

Предельные вероятности:

(17)

, , . . . , , ,…, (18)

Вероятность отказа:

(19)

Относительная пропускная способность:

Абсолютная пропускная способность:

Среднее число занятых каналов:

Среднее число заявок в очереди:

(23)

Среднее число заявок в системе:

Пример оптимизации СМО

Показатели работы системы массового обслуживания могут использоваться для решения оптимизационных задач.

Задача.

Определить оптимальное количество причалов в порту с минимальными затратами, если известно, что за год было обслужено 270 судов. Разгрузка одного судна длится в среднем 12 часов. Пеня за простой судна в порту составляет 100 тыс.р./сут.. Затраты на причал 150 тыс.р./сут. Расчеты приведены в таблице.

Решение.

По условию

λ=270(судов/год)=270/360=0,75(судов/сут.),

tобсл=12ч=12/24=0,5 сут.

По формулам (1, 2):

= λ/μ= λ * tобсл = 0,75 * 0,5 = 1,5

Очередь не будет возрастать до бесконечности при условии /n <1, т.е. при n > = 1,5. Таким образом, минимальное количество причалов n =2.

Найдем характеристики обслуживания СМО порта при количестве причалов n=2.

Вероятность того, что в порту отсутствуют суда, вычислим по формуле (9):

В среднем 1,4 % времени причалы будут простаивать.

Среднее число судов, находящихся в очереди рассчитывается по формуле (13):

Среднее время ожидания в очереди вычисляется по формуле (14):

T =1,93/0,75 = 2,57 (сут.)

Определим среднее число судов в порту по формуле (15):

L =1,93+1,5=3,43 (судна)

Среднее время нахождения судов в порту находится по формуле (16):

T =3,43 /0,75 =4,57 (сут)

Среднее число занятых причалов (12) =1,5.

Анализ характеристик обслуживания свидетельствует о значительной перегрузке порта при наличии двух причалов.

Найдем суммарную пеню за простой судов в порту в сутки. Для этого перемножим пеню за простой судна в порту и среднее число судов в очереди:

= * L .

Определим затраты по обслуживанию причалов в сутки: = *n.

Для двух причалов в сутки

Суммарные затраты составят: С= + =193+300=493(ден.ед.)

Суммарные затраты по условию задачи должны быть минимальны.

Рассчитаем суммарные затраты для количества причалов n = 2, 3, 4. Расчеты приведены в таблице. Как видно из таблицы, минимальные затраты достигаются при n = 3. Следовательно, для минимизации затрат необходимо 3 причала.

Таблица 1.- Расчет оптимального числа причалов

Показатель Количество причалов
Интенсивность потока судов 0,75 0,75 0,75
Интенсивность обслуживания судов 0,5 0,5 0,5
Интенсивность нагрузки причала 1,5 1,5 1,5
Вероятность, что все причалы свободны 0,14 0,21 0,22
Среднее число судов в очереди 1,93 0,24 0,04
Среднее время пребывания судна в очереди, сут. 2,57 0,32 0,06
Среднее число судов в порту 3,43 1,74 1,54
Среднее время пребывания судна в порту, сут 4,57 2,32 2,06
Пеня за простой судна в порту, ден.ед./сут. () 100,00 100,00 100,00
Затраты по обслуживанию причала в сутки, ден.ед./сут. () 150,00 150,00 150,00
Суммарная пеня за простой судов в порту в сутки, ден.ед. () 192,86 23,68 4,48
Суммарные затраты по обслуживанию причалов в сутки, ден.ед. () 300,00 450,00 600,00
Суммарные затраты, ден.ед.(С) 492,86 473,68 604,48

Варианты заданий

Таблица 2 - Варианты заданий

Номер варианта
Задача
Номер варианта
Задача

1. В парикмахерской в зависимости от сложности стрижки, мастер выполняет работу в среднем за 30 мин. Посетители приходят в среднем через 25 мин. За каждый час работы мастер зарабатывает 300 ден.ед.. Очередь ограничена до 4 человек. Если в очереди больше 4 человек, клиент уходит, и потери за час составляют 150 ден.ед. Определить предельные вероятности состояний и характеристики обслуживания. Определить оптимальное количество мастеров.

2. Автомобили подъезжают на АЗС со средней частотой 2 автомобиля за 5 минут. Заправка автомобиля в среднем длится 3 минуты. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество колонок, чтобы средняя длина очереди не превышала 3 авт.

3. Рассматривается круглосуточная работа пункта проведения профилактического осмотра автомашин. На осмотр и выявление дефектов каждой машины затрачивается в среднем 30 минут. На осмотр поступает в среднем 36 машин в сутки. Если машина, прибывшая в пункт осмотра, не застает ни одного канала свободным, она покидает пункт осмотра не обслуженной. Определить вероятности состояний и характеристики обслуживания профилактического пункта осмотра. Определить количество каналов, чтобы относительная пропускная способность была не меньше 0,8.

4. В срочной мастерской по починке обуви в зависимости от сложности ремонта мастеру требуется в среднем 15 мин. Посетители приходят в среднем через каждые 14 мин. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество мастеров, чтобы средняя длина очереди не превышала 5 заказов.

5. В справочной оператор дает справку в среднем за 4 мин. Звонки поступают каждые 3мин. Если операторы заняты, то звонок не обслуживается. Определить вероятности состояний и характеристики обслуживания справочной. Определить количество каналов, чтобы относительная пропускная способность была не меньше 0,75.

6. В зависимости от количества продуктов у покупателя кассиру в магазине требуется в среднем на один чек 2 мин. Покупатели подходят к кассе с интенсивностью 81 человек/час. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество кассиров, чтобы средняя длина очереди не превышала 4 покупателей.

7. Диспетчеру в АТП в зависимости от типа автомобиля требуется в среднем на выдачу одного маршрутного листа 20 минут. Заявки на автомобили поступают в среднем через каждые 30 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество диспетчеров, чтобы средняя длина очереди не превышала 2 заявок.

8. Требуется оценить работу АТС. Если все линий связи заняты, то абонент выбывает из системы. Звонки поступают с интенсивностью 2 вызов/мин.. Продолжительность разговоров распределена экспоненциально, и в среднем равна 1,5 мин. Определить предельные вероятности и показатели эффективности системы. Определить количество операторов, чтобы относительная пропускная способность АТС была не меньше 0,9.

9. В банке в зависимости от сложности запроса клиента кассиру требуется в среднем 10 минут. Клиенты подходят к нему в среднем через каждые 12 минут. Кассир зарабатывает 15000 ден.ед. за месяц. Очередь ограничена до 6 человек. Если в очереди больше 6 человек, клиент уходит, и потери за час составляют 200 ден.ед. Определить предельные вероятности состояний и характеристики обслуживания. Определить оптимальное количество кассиров.

10. В среднем на одну транзакцию у банкомата уходит 2 минуты. Клиенты подходят к нему в среднем через каждые 20 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество банкоматов, чтобы средняя длина очереди не превышала 2 человек.

11. В магазине продавцу в зависимости от покупателя требуется в среднем на одну покупку 10 мин. Покупатели подходят к нему в среднем через каждые 5 мин. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество продавцов, чтобы средняя длина очереди не превышала 5 человек.

12. В отделе заказов мебельной фабрики менеджеру по продажам в зависимости от заказа клиента требуется в среднем на оформление одного заказа 25 минут. Клиенты приходят в среднем через каждые 30 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество менеджеров, чтобы средняя длина очереди не превышала 3 человек.

Порядок выполнения работы

1.Рассчитайте в системе Excel показатели системы массового обслуживания по формулам, приведенным в методичке. Количество каналов обслуживания n=1, 2, 3...k перебирается для нахождения оптимального значения по варианту. Предполагается, что входные потоки и обслуживание соответствуют пуассоновскому распределению.

2.Проведите анализ полученных результатов.

3.Составьте отчет.

1) Цель работы;

2) постановка задачи;

3) результаты расчетов, проведенных в Excel;

4) выводы по выполнению работы.

Контрольные вопросы

1. Что включает в себя понятие система массового обслуживания?

2. Какие существуют виды систем массового обслуживания?

3. Что относится к основным характеристикам и показателям эффективности систем массового обслуживания?

4. Укажите основные свойства (характеристики) входящего потока требований?

5. Перечислите основные особенности и характеристики систем массового обслуживания с ожиданием?

6. Каковы основные характеристики СМО с отказами?

7. Приведите примеры различных видов СМО?

Библиографический список

1. Афанасьев М.Ю. Исследование операций в экономике: модели, задачи, решения. / М.Ю. Афанасьев, Б.П. Суворов.- М.:ИНФРА, 2003.-444с.

2. Вентцель Е.С. Исследование операций. Задачи, приниципы, методология./ Е.С. Вентцель.-М.: Высшая школа, 2001.-208с.

3. Зайченко Ю.П. Исследование операций./ Ю.П. Зайченко.- К.: Вища школа, 1975.-320с.

4. Конюховский П.В. Математические методы исследования операций. / П.В. Конюховский.- СПб.: Питер, 2001.-192с.

5. Кремер Н.Ш., Путко Б.А. Исследование операций в экономике./ Н.Ш. Кремер, Б.А. Бутко, И.М. Тришин.- М.:Банки и биржи, ЮНИТИ, 1997.-407с.

1. Кудрявцев Е.М. GPSS World.Основы имитационного моделирования различных систем.- М.: ДМК Пресс, 2004.- 320 с.

2. Советов В.Я., Яковлев С.А. Моделирование систем. - М.: Высшая школа, 1985

3. Советов В.Я., Яковлев С.А. Моделирование систем: курсовое проектирование. - М.: Высшая школа, 1989

Рассмотрим одноканальную систему массового обслуживания с ожиданием.

Будем предполагать, что входящий поток заявок на обслуживание есть простейший поток с интенсивностью λ.

Интенсивность потока обслуживания равна μ. Длительность обслуживания – случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий.

Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания. Будем считать, что размер очереди ограничен и не может вместить более m заявок, т.е. заявка, заставшая в момент своего прихода в СМО m +1 заявок (m ожидающих в очереди и одну, находящуюся на обслуживании), покидает СМО.

Система уравнений, описывающих процесс в этой системе, имеет решение:

(0‑1)

Знаменатель первого выражения представляет собой геометрическую прогрессию с первым членом 1 и знаменателем ρ, откуда получаем

При ρ = 1 можно прибегнуть к прямому подсчету

(0‑8)

Среднее число находящихся в системе заявок.

Поскольку среднее число находящихся в системе заявок

(0‑9)

где - среднее число заявок, находящихся под обслуживанием, то зная остается найти . Т.к. канал один, то число обслуживаемых заявок может равняться либо 0, либо 1 с вероятностями P 0 и P 1=1- P 0 соответственно, откуда

(0‑10)

и среднее число находящихся в системе заявок равно

(0‑11)

Среднее время ожидания заявки в очереди .

(0‑12)

т.е., среднее время ожидания заявки в очереди равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Среднее время пребывания заявки в системе.

Время пребывания заявки в системе складывается из времени ожидания заявки в очереди и времени обслуживания. Если загрузка системы составляет 100%, то =1/μ, в противном случае = q / μ . Отсюда

(0‑13)

Содержание работы .

Подготовка инструментария эксперимента .

Выполняется аналогично в соответствии с общими правилами.

Расчет на аналитической модели .

1. В приложение Microsoft Excel подготовьте таблицу следующего вида.

2. В столбцах для параметров СМО таблицы запишите исходные данные, которые определяются по правилу:

m=1,2,3

(максимальная длина очереди).

Для каждого значения m необходимо найти теоретические и экспериментальные значения показателей СМО для таких пар значений:

= <порядковый номер в списке группы>

3. В столбцы с показателями аналитической модели впишите соответствующие формулы.

Эксперимент на имитационной модели .

1. Установите режим запусков с экспоненциально распределенным временем обслуживания, задав значение соответствующего параметра равным 1.

2. Для каждой комбинации m , и осуществите запуск модели.

3. Результаты запусков внесите в таблицу.

4. Внесите в соответствующие столбцы таблицы формулы для расчета среднего значения показателя P отк , q и А.


Анализ результатов .

1. Проанализируйте результаты, полученные теоретическим и экспериментальным способами, сравнив результаты между собой.

2. Для m=3 постройте на одной диаграмме графики зависимости P отк от на теоретически и экспериментально полученных данных.

Оптимизация параметров СМО .

Решите задачу оптимизации размера числа мест в очереди m для прибора со средним временем обслуживания = с точки зрения получения максимальной прибыли. В качестве условий задачи возьмите:

- доход от обслуживания одной заявки равным 80 у.е./час,

- стоимость содержания одного прибора равным 1у.е./час.

1. Для расчетов целесообразно создать таблицу:

Первый столбец заполняется значениями чисел натурального ряда (1,2,3…).

Все клетки второго и третьего столбцов заполняются значениями и.

В клетки столбцов с четвертого по девятый переносятся формулы для столбцов таблицы раздела 0.

В столбцы с исходными данными разделов Доход, Расход, Прибыль внесите значения (см. выше).

В столбцах с вычисляемыми значениями разделов Доход, Расход, Прибыль запишите расчетные формулы:

- число заявок в единицу времени

N r =A

- суммарный доход в единицу времени

I S = I r *N r

- суммарный расход в единицу времени

E S =E s + E q *(n-1)

- прибыль в единицу времени

P = I S - E S

где

I r - доход от одной заявки ,

E s - расход на эксплуатацию одного прибора ,

E q - расход на эксплуатацию одного места в очереди .

Графики для P отк ,

- таблицу с данными для нахождения наилучшего m и значение m опт,

- график зависимости прибыли в единицу времени от m .


Контрольные вопросы :

1) Дайте краткое описание одноканальной модели СМО с ограниченной очередью.

2) Какими показателями характеризуется функционирование одноканальной СМО с отказами?

3) Как рассчитывается вероятность p 0 ?

4) Как рассчитываются вероятности p i ?

5) Как найти вероятность отказа обслуживания заявки?

6) Как найти относительную пропускную способность?

7) Чему равна абсолютная пропускная способность?

8) Как подсчитывается среднее число заявок в системе?

9) Приведите примеры СМО с ограниченной очередью.

Задачи .

1) Порт имеет один грузовой причал для разгрузки судов. Интенсивность потока составляет 0,5 заходов в сутки. Среднее время разгрузки одного судна 2 суток. Если в очереди на разгрузку стоят 3 судна, то приходящее судно направляется для разгрузки на другой причал. Найти показатели эффективности работы причала.

2) В справочную железнодорожного вокзала поступают телефонные запросы с интенсивностью 80 заявок в час. Оператор справочной отвечает на поступивший звонок в среднем 0,7 мин. Если оператор занят, клиенту выдается сообщение "Ждите ответа", запрос становится в очередь, длина которой не превышает 4 запросов. Дайте оценку работы справочной и вариант ее реорганизации

В коммерческой деятельности чаще встречаются СМО с ожиданием (очередью).

Рассмотрим простую одноканальную СМО с ограниченной очередью, в которой число мест в очереди т - фиксированная величина. Следовательно, заявка, поступившая в тот момент, когда все места в очереди заняты, не принимается к обслуживанию, не встает в очередь и.покидает систему.

Граф этой СМО представлен на рис. 3.4 и совпадает с графом рис. 2.1 описывающим процесс «рождения--гибели», с тем отличием, что при наличии только одного канала.

Размеченный граф процесса «рождения - гибели» обслуживания все интенсивности потоков обслуживания равны

Состояния СМО можно представить следующим образом:

S0 - канал обслуживания свободен,

S, - канал обслуживания занят, но очереди нет,

S2- канал обслуживания занят, в очереди стоит одна заявка,

S3- канал обслуживания занят, в очереди стоят две заявки,

Sm+1 - канал обслуживания занят, в очереди все т мест заняты, любая следующая заявка получает отказ.

Для описания случайного процесса СМО можно воспользоваться изложенными ранее правилами и формулами. Напишем выражения, определяющие предельные вероятности состояний:

Выражение для р0 можно в данном случае записать проще, пользуясь тем, что в знаменателе стоит геометрическая прогрессия относительно р, тогда после соответствующих преобразований получаем:

с= (1- с)

Эта формула справедлива для всех р, отличных от 1, если же р = 1, то р0 = 1/(т + 2), а все остальные вероятности также равны 1/(т + 2).

Если предположить т = 0, то мы переходим от рассмотрения одноканальной СМО с ожиданием к уже рассмотренной одноканальной СМО с отказами в обслуживании.

Действительно, выражение для предельной вероятности р0в случае т = 0 имеет вид:

pо = м / (л+м)

И в случае л =м имеет величину р0= 1 / 2.

Определим основные характеристики одноканальной СМО с ожиданием: относительную и абсолютную пропускную способность, вероятность отказа, а также среднюю длину очереди и среднее время ожидания заявки в очереди.

Заявка получает отказ, если она поступает в момент времени, когда СМО уже находится в состоянии Sm+1 и, следовательно, все места в очереди да заняты и один канал обслуживает

Поэтому вероятность отказа определяется вероятностью появлением

Состояния Sm+1:

Pотк = pm+1 = сm+1 * p0

Относительная пропускная способность, или доля обслуживаемых заявок, поступающих в единицу времени, определяется выражением

Q = 1- pотк = 1- сm+1 * p0

абсолютная пропускная способность равна:

Среднее число заявок Lочстоящих в очереди на обслуживание, определяется математическим ожиданием случайной величины к - числа заявок, стоящих в очереди

случайная величина к принимает следующие только целочисленные значения:

  • 1 - в очереди стоит одна заявка,
  • 2 - в очереди две заявки,

т-в очереди все места заняты

Вероятности этих значений определяются соответствующими вероятностями состояний, начиная с состояния S2. Закон распределения дискретной случайной величины к изображается следующим образом:

Таблица 1. Закон распределения дискретной случайной величины

Математическое ожидание этой случайной величины равно:

Lоч = 1* p2 +2* p3 +...+ m* pm+1

В общем случае при p ?1 эту сумму можно преобразовать, пользуясь моделями геометрической прогрессии, к более удобному виду:

Lоч = p2 * 1- pm * (m-m*p+1) * p0

В частном случае при р = 1, когда все вероятности pkоказываются равными, можно воспользоваться выражением для суммы членов числового ряда

1+2+3+ m = m(m+1)

Тогда получим формулу

L"оч= m(m+1) * p0 = m(m+1) (p=1).

Применяя аналогичные рассуждения и преобразования, можно показать, что среднее время ожидания обслуживания заявки а очереди определяется формулами Литтла

Точ = Lоч/А (при р? 1) и Т1оч= L"оч /А(при р = 1).

Такой результат, когда оказывается, что Точ ~ 1/ л, может показаться странным: с увеличением интенсивности потока заявок как будто бы должна возрастать длина очереди и уменьшается среднее время ожидания. Однако следует иметь в виду, что, во-первых, величина Lоч является функцией от л и м и, во-вторых, рассматриваемая СМО имеет ограниченную длину очереди не более mзаявок.

Заявка, поступившая в СМО в момент времени, когда все каналы заняты, получает отказ, и, следовательно, время ее «ожидания» в СМО равно нулю. Это приводит в общем случае (при р? 1) к уменьшению Точростом л, поскольку доля таких заявок с ростом л увеличивается.

Если отказаться от ограничения на длину очереди, т.е. устремить m--> >?, то случаи р < 1 и р?1 начинают существенно различаться. Записанные выше формулы для вероятностей состояний преобразуются в случае р < 1 к виду

При достаточно большом к вероятностьpk стремится к нулю. Поэтому относительная пропускная способность будет Q= 1, а абсолютная пропускная способность станет равной А --л Q -- л следовательно, обслуживаются все поступившие заявки, причем средняя длина очереди окажется равной:

Lоч =p2 1-p

а среднее время ожидания по формуле Литтла

Точ = Lоч/А

В пределе р << 1 получаем Точ = с / м т.е. среднее время ожидания быстро уменьшается с увеличением интенсивности потока обслуживания. В противном случае при р? 1 оказывается, что в СМО отсутствует установившийся режим. Обслуживание не успевает за потоком заявок, и очередь неограниченно растет со временем (при t > ?). Предельные вероятности состояний поэтому не могут быть определены: при Q= 1 они равны нулю. Фактически СМО не выполняет своих функций, поскольку она не в состоянии обслужить все поступающие заявки.

Нетрудно определить, что доля обслуживаемых заявок и абсолютная пропускная способность соответственно составляют в среднем с и м, однако неограниченное увеличение очереди, а следовательно, и времени ожидания в ней приводит к тому, что через некоторое время заявки начинают накапливаться в очереди на неограниченно долгое время.

В качестве одной из характеристик СМО используют среднее время Тсмо пребывания заявки в СМО, включающее среднее время пребывания в очереди и среднее время обслуживания. Эта величина вычисляется по формулам Литтла: если длина очереди ограничена -- среднее число заявок, находящихся в очереди, равно:

Lсмо= m+1 ;2

Тсмо= Lсмо; при p ?1

A тогда среднее время пребывания заявки в системе массового обслуживания (как в очереди, так и под обслуживанием) равно:

Тсмо= m+1 при p ?1 2м

Тема. Теория систем массового обслуживания.

Каждая СМО состоит из какого–то количества обслуживающих единиц, которые называются каналами обслуживания (это станки, транспортные тележки, роботы, линии связи, кассиры, продавцы и т.д.). Всякая СМО предназначена для обслуживания какого–то потока заявок (требований), поступающих в какие-то случайные моменты времени.

Классификация СМО по способу обработки входного потока заявок.

Системы массового обслуживания

С отказами

(без очереди)

С очередью

Неограниченная очередь

Ограниченная очередь

С приоритетом

В порядке поступления

Относительный приоритет

Абсолютный приоритет

По времени обслуживания

По длине очереди

Классификация по способу функционирования:

    открытыми, т.е. поток заявок не зависит от внутреннего состояния СМО;

    закрытыми, т.е. входной поток зависит от состояния СМО (один ремонтный рабочий обслуживает все каналы по мере их выхода из строя).

Многоканальная СМО с ожиданием

Система с ограниченной длиной очереди. Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

- все каналы свободны;

- занят один канал, остальные свободны;

- заняты -каналов, остальные нет;

- заняты все -каналов, свободных нет;

есть очередь:

- заняты все n-каналов; одна заявка стоит в очереди;

- заняты все n-каналов, r-заявок в очереди;

- заняты все n-каналов, r-заявок в очереди.

ГСП приведен на рис. 9. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Рис. 9. Многоканальная СМО с ожиданием

Вероятность отказа.

(29)

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

(30)

Среднее число занятых каналов.

Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

(31)

где .

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (23), (24) - (26)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди.

(32)

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди только множителем , т. е.

.

Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО .

Системы с неограниченной длиной очереди. Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более m-заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятность отказа

Среднее число заявок в очереди получим при из (31):

,

а среднее время ожидания - из (32): .

Среднее число заявок .

Пример 2. Автозаправочная станция с двумя колонками (n = 2) обслуживает поток машин с интенсивностью =0,8 (машин в минуту). Среднее время обслуживания одной машины:

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно. Найти характеристики СМО.

СМО с ограниченным временем ожидания. Ранее рассматривались системы с ожиданием, ограниченным только длиной очереди (числом m-заявок, одновременно находящихся в очереди). В такой СМО заявка, разраставшая в очередь, не покидает ее, пока не дождется обслуживания. На практике встречаются СМО другого типа, в которых заявка, подождав некоторое время, может уйти из очереди (так называемые «нетерпеливые» заявки).

Рассмотрим СМО подобного типа, предполагая, что ограничение времени ожидания является случайной величиной.

Пуассоновский «поток уходов» с интенсивностью:

Если этот поток пуассоновский, то процесс, протекающий в СМО, будет марковским. Найдем для него вероятности состояний. Нумерация состояний системы связывается с числом заявок в системе - как обслуживаемых, так и стоящих в очереди:

нет очереди:

- все каналы свободны;

- занят один канал;

- заняты два канала;

- заняты все n-каналов;

есть очередь:

- заняты все n-каналов, одна заявка стоит в очереди;

- заняты все n-каналов, r-заявок стоят в очереди и т. д.

Граф состояний и переходов системы показан на рис. 10.

Рис. 10. СМО с ограниченным временем ожидания

Разметим этот граф, как и раньше; у всех стрелок, ведущих слева направо, будет стоять интенсивность потока заявок . Для состояний без очереди у стрелок, ведущих из них справа налево, будет, как и раньше, стоять суммарная интенсивность потока обслуживании всех занятых каналов. Что касается состояний с очередью, то у стрелок, ведущих из них справа налево, будет стоять суммарная интенсивность потока обслуживания всех n-каналов плюс соответствующая интенсивность потока уходов из очереди. Если в очереди стоят r-заявок, то суммарная интенсивность потока уходов будет равна .

Среднее число заявок в очереди: (35)

На каждую из этих заявок действует «поток уходов» с интенсивностью . Значит, из среднего числа -заявок в очереди в среднем будет уходить, не дождавшись обслуживания, -заявок в единицу времени и всего в единицу времени в среднем будет обслуживаться -заявок. Относительная пропускная способность СМО будет составлять:

Среднее число занятых каналов по-прежнему получаем, деля абсолютную пропускную способность А на Замкнутые СМО

До сих пор мы рассматривали системы, в которых входящий поток никак не связан с выходящим. Такие системы называются разомкнутыми. В некоторых же случаях обслуженные требования после задержки опять поступают на вход. Такие СМО называются замкнутыми. Поликлиника, обслуживающая данную территорию, бригада рабочих, закрепленная за группой станков, являются примерами замкнутых систем.

В замкнутой СМО циркулирует одно и то же конечное число потенциальных требований. Пока потенциальное требование не реализовалось в качестве требования на обслуживание, считается, что оно находится в блоке задержки. В момент реализации оно поступает в саму систему. Например, рабочие обслуживают группу станков. Каждый станок является потенциальным требованием, превращаясь в реальное в момент своей поломки. Пока станок работает, он находится в блоке задержки, а с момента поломки до момента окончания ремонта - в самой системе. Каждый рабочий является каналом обслуживания. = =P 1 + 2 P 2 +…+(n- 1 )P n- 1 +n( 1 -P На вход трехканальной СМО с отказами поступает поток заявок с интенсивностью =4 заявки в минуту, время обслуживания заявки одним каналом t обсл =1/μ =0,5 мин. Выгодно ли с точки зрения пропускной способности СМО заставить все три канала обслуживать заявки сразу, причем среднее время обслуживания уменьшается втрое? Как это скажется на среднем времени пребывания заявки в СМО?

Пример 2 . /μ=2, ρ/ n =2/3<1.

Задача 3:

Два рабочих обслуживают группу из четырех станков. Остановки работающего станка происходят в среднем через 30 мин. Среднее время наладки составляет 15 мин. Время работы и время наладки распределено по экспоненциальному закону.

Найдите среднюю долю свободного времени для каждого рабочего и среднее время работы станка.

Найдите те же характеристики для системы, в которой:

а) за каждым рабочим закреплены два станка;

б) два рабочих всегда обслуживают станок вместе, причем с двойной интенсивностью;

в) единственный неисправный станок обслуживают оба рабочих сразу (с двойной интенсивностью), а при появлении еще хотя бы одного неисправного станка они начинают работать порознь, причем каждый обслуживает один станок (вначале опишите систему в терминах процессов гибели и рождения).

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш бизнес - От идеи до реализации