Ваш бизнес - От идеи до реализации

Правильно сформулированная проблема - проблема, наполовину решенная.

Чарльз Кеттеринг

Основные понятия теории принятия решений

Каждый человек в жизни принимает решения по разным вопросам, требующим выбора наилучшего варианта. Например, школьник должен решить, какую профессию выбрать в будущем. Затем возникает проблема, какой вуз выбрать для обучения. Мы постоянно решаем вопросы, которые требуют анализа информации и выбора наилучшего из существующих вариантов (альтернатив ). Выбор одного из вариантов - наилучшего, но нашему мнению, и является основой принятия решения. Выбор решения происходит на основе сформулированных критериев, которые позволяют оценить эффективность достижения поставленной цели. Критерии представляют собой систему требований или параметров, которым должно удовлетворять выбранное решение. Такое решение принято называть оптимальным (наилучшим) при существующих условиях для достижения поставленной цели. Следовательно, чтобы принять наилучшее решение, необходимо оценить каждый вариант по выбранному критерию, т.е. оценить все «за» и «против», а затем определить конечный вариант решения.

Решение - конечный результат процесса выбора одного из множества существующих альтернатив, который позволяет решить какую-либо проблему (задачу). Принятие решений является важной процедурой управления.

Идея создания теории принятия решений возникла в XVIII в. у великого французского математика Жозефа Луи Лагранжа (1736-1813), который для обоснования технологии принятия решения разработал принцип наименьшего действия в книге «Аналитическая механика». В настоящее время поиск научно обоснованных способов выбора наилучшего решения для достижения определенной цели с учетом ограниченных ресурсов стал осуществляться на основе аналитических и математических операций. В процессе постепенной интеграции теоретических знаний и практического опыта на междисциплинарном уровне для обоснования и поиска оптимальных решений при управлении сложными психологическими, социально- экономическими, политическими, техническими и другими системами сформировалась теория принятия решений в качестве специальной области исследования, включающей методы математики, статистики, экономики, управления и психологии с целью изучения закономерностей выбора людьми путей решения проблем, а также способов достижения желаемого результата.

В сложных и больших системах (социальных, экономических, политических, технических, экологических и др.), для которых характерна неопределенность, процесс принятия решений методом проб и ошибок является не только неэффективным, но подчас даже пагубным. Дальнейшее развитие научных основ принятия решений осуществлялось на базе основных положений теории систем, теории управления и теории исследования операций. Определяющее значение для развития методологии принятия решений имеют методы системного анализа. Теория принятия решений (ТПР) развивается на основе системного подхода. В постоянно меняющихся условиях принятие решений является процедурой, требующей предварительного системного анализа влияния различных факторов для создания альтернатив, эта процедура также позволяет получать прогнозные оценки результатов таких решений.

Обратите внимание!

Основу теории принятии решений (ТПР) составляет системный анализ , рассматривающий объект управления как сложную систему с многообразными внутрисистемными связями между ее элементами и внешними связями с другими системами, и кибернетика , в рамках которой изучаются закономерности управления на основе информации и исследование операций.

Объектом исследования в теории принятия решений является проблемная ситуация .

Предметом исследования выступают общие закономерности выработки решений для проблемных ситуаций, а также закономерности, присущие процессу моделирования проблемной ситуации.

Основным назначением этой теории является разработка научно обоснованных рекомендаций относительно организации и технологий построения процедур подготовки и принятия решений в сложных ситуациях.

Теории приятия решений опираются на ряд важных понятий, которые характеризуют данную область научных знаний: проблема; цель; лицо, принимающее решение; альтернатива; критерии оценки; оптимальное решение.

Основное понятие - лицо , принимающее решение ; это - тот специалист или руководитель (менеджер), который несет ответственность за принятое решение. Проект решения, как правило, готовит группа специалистов (или аппарат ЛГ1Р), но ответственность за его эффективность лежит полностью на ЛИР. Поэтому порядок подготовки решения (или регламент) играет важную роль в процессе принятия решений.

Регламент - определенный порядок процедур для сбора информации, ее анализа, выдвижения альтернатив и их оценки.

Цель является вторым важным понятием теории приятия решений. Каждое решение должно быть направлено на достижение цели или целей. Формулирование цели играет определяющую роль как в системе управления, так и в процессе принятия решения. Цель не должна содержать противоречий. Любая цель может быть достигнута разными средствами (ресурсами).

Ресурсы - третье важное понятие теории принятия решений. К ресурсам следует отнести не только материальные, финансовые, организационные, информационные и др., но и те методы, с помощью которых принимаются решения. 11оиск ресурсов, с помощью которых могут быть достигнуты цели, во многом определяет эффективность принимаемого решения и его качество. Качество решений во многом зависит от личных и профессиональных характеристик руководителя. К таким характеристикам следует отнести компетентность в области социально-экономической, производственной, финансовой и управленческой деятельности.

Обратите внимание!

Чаще всего руководители предприятия ассоциируют ресурсы только с финансами, но достигнуть определенных целей можно и другими средствами. Практика показывает, что достигнуть поставленной цели можно и за счет организационных и интеллектуальных ресурсов. Например, путем модернизации организационно-управленческой структуры - проводя реинжиниринг, сокращая затраты на управленческий аппарат или активизируя интеллектуальный потенциал работников - внедрением инноваций.

С точки зрения системного подхода и теории организации результат решения (действие) может вызывать положительную, отрицательную или нейтральную реакцию в элементах (подсистемах) организованной системы. Следовательно, каждое решение должно иметь взвешенный характер, учитывать конкретные условия и возможные последствия. Следует отметить, что практически каждое решение ЛПР имеет субъективный характер, а проверка его на объективность требует дополнительных аналитических процедур. Особенно это касается решения проблем, возникающих в процессе управления социально-экономическими объектами в условиях неопределенности.

Начало научных исследований по данной тематике положили Даниэл Канеман и Амос Тверски , которые в 1979 г. опубликовали статью «Теория перспектив: анализ принятия решений в условиях риска» и заложили основы так называемой поведенческой экономики (behavioral economics). В данной работе ученые представили результаты психологических исследований руководителей, которые показали, что человек не может рационально и адекватно оценивать размеры ожидаемых выгод (или потерь) от принимаемых решений в условиях риска, а также представить количественные значения уровня вероятности случайных событий.

Обычно руководители ошибаются в оценках рисков. Они, как правило, или недооценивают вероятность событий, которые, скорее всего, произойдут, или переоценивают гораздо менее вероятные события. Результаты исследования показали, что даже математики, владеющие знаниями в области теории вероятностей, в реальных жизненных ситуациях не используют эти знания для оценки рисковых событий, а при принятии решений чаще всего опираются на сложившиеся стереотипы, предрассудки и эмоции.

Именно эти результаты психологических исследований позволили Д. Канеману и А. Тверски предложить новую теорию принятия решений, основанную не на теории вероятностей, а на психологических законах поведения человека в условиях риска. Эту теорию они назвали теорией перспективы (prospect theory). Согласно этой теории обычный человек в условиях риска не способен правильно оценивать будущие выгоды или потери в абсолютном выражении. Он оценивает их, только сравнивая с некоторым общепринятым стандартом и стремясь избежать ухудшения своего положения, т.е. учитывая безопасность.

Само отношение к процессу принятия решений в менеджменте как к области экономической науки существенно поменялось. Классики экономической науки (А. Смит, Д. Рикардо) предложили модель «человека экономического» с сильно выраженным «экономическим поведением», рациональным подходом и компетентностью в собственных делах. Долгое время эти идеи были в экономике «мейнстримом» (основополагающей и превалирующей концепцией). Критика такого подхода началась только в трудах Дж. С. Милля. Значительно позднее исследователи в этом направлении были отмечены Нобелевскими премиями по экономике: Дж. Акерлоф и Дж. Стиглиц (2001), Д. Канеман и В. Смит (2002). Исследования этих ученых, в том числе лабораторные, убедительно подтвердили, что «большая часть используемых нами знаний и способность принимать решения имеют неосознанный характер» (В. Смиту.

Учет всего многообразия информации при решении сложных проблем невозможен без современных средств поддержки принятия решений. К ним следует отнести систему поддержки принятия решений (СППР), которая включает программно-компьютерные, математические средства и средства системного анализа.

В процессе принятия решений в современных динамичных социально- экономических условиях многоуровневых систем организации необходимо учитывать наличие множества:

  • целей;
  • возможных средств и методов, обеспечивающих достижение целей;
  • факторов, создающих разные условия (риски), в которых осуществляются действия (в том числе и условия неопределенности);
  • критериев (требований) оценки решений, направленных на достижение целей;
  • вариантов решений.

Обратите внимание!

Понятие «риск » связано с понятием «неопределенность», т.е. с большим числом факторов, которые необходимо учитывать при принятии решений. В современной экономической литературе одни авторы разделяют эти два понятия, а другие склонны считать, что они тождественны.

Слово «риск» - испано-португальского происхождения, означает опасность, подводную скалу. Понятие «неопределенность » в экономике связано с неустранимыми воздействиями рыночной среды на бизнес, обусловленными большим числом фактором, которые оценить весьма трудно. Риск возникает в тех случаях, когда необходимо принять решение в условиях неопределенности или недостаточной информации. Именно поэтому процесс принятия решения, включая и его подготовку, требует применения всего инструментария системного анализа при обосновании и выборе альтернативы с учетом результатов всестороннего анализа большого объема информации.

Обратите внимание!

Процесс принятия решения основан на «снятии неопределенности» (т.е. уменьшении объема информации) по возникающей проблеме. Поэтому принятие решения в процессе управления всегда связано с информационными процессами. Достаточное и объективное информационное обеспечение процесса принятия решения позволяет добиваться высокой эффективности управленческого процесса.

Одним из примеров принятия решений в условиях риска может служить развитие инновационного предпринимательства в России, которое является рискованным делом, так как связано с постоянно меняющимися

внешними и внутренними инвестиционными условиями. Поэтому большая часть предпринимателей осуществляет инновационную деятельность на основе самофинансирования. Это объясняется в основном многообразием внешних факторов предпринимательской деятельности, которые не способствуют его инновационному развитию, а также усложнением международной финансовой обстановкой (международными санкциями). Инвестирование в российские высокие технологии должно учитывать традиционные особенности формирования инновационного предпринимательства и специфику правовых и экономических условий российской действительности. Поэтому решения об инновационном развитии каждая организация принимает сама.

Тема 13

Организация разработки решений руководителем на основе системного анализа складывающейся обстановки

1. Основные понятия и определения теории принятия решений…………… 2

2. Факторы, определяющие эффективность решений ……………..………… 9

3. Концепции, принципы и парадигмы разработки решений …..………….. 16

4. Модель проблемной ситуации …………………………………………….. 25

Литература …………………………………………………………………….. 33

Санкт-Петербург - 2012


Основные понятия и определения теории принятия решений

Далее будем использовать следующие основные понятия: управление, ЛПР, проблема или задача (управления), решение, цель (управления, деятельности), операция (кибернетиче­ская), альтернатива, активные ресурсы, результат, мо­дель, условия (разработки решений).

Обращаем внимание на то, что эти основные понятия сле­дует воспринимать только как термины, а не как стро­гие определения. Причин тому, как минимум, две.

Во-первых, для некоторых категорий теории принятия решений (ТПР) просто нет стро­гих определений. Во-вторых, любое определение все­гда достаточно косно, а ТПР - динамическая, бурно развивающаяся наука, которая постоянно пересматри­вает свой понятийный и методический аппараты. Следо­вательно, нет необходимости учить наизусть те слова, посредством которых будем толковать смысл основ­ных понятий, однако обязательно следует глубоко про­никнуться теми мыслями и образами, которые за этими словами стоят, уметь их интерпретировать.

Управление. Как уже отмечалось, решение проблемы, стоящей перед ЛПР, возможно только путем направле­ния и задействования активных ресурсов для исполне­ния конкретных заданий или работ. Ничто само по се­бе не делается. Людям, принимающим участие в опера­ции, нужно указать, где, когда, что и с помощью чего сделать, каковы требования к качеству выполняемых заданий или работ, каковы допустимые вариации от на­меченных заданий и при каких форс-мажорных обстоя­тельствах следует принять экстренные меры, каковы эти меры и пр. Все это объединяется одним понятием - управление. Управлять - это значит направлять кого-либо или что-либо к намеченной цели для достижения желаемого результата.

Главное требование к качеству управления - это его непрерывность. Ошибочно представление о том, что все само собой сделается - это опасное заблуждение! Оно сродни представлению о том, что при поездке на автомобиле можно на длительное время бросить руль. Любое дело, как и автомобиль, без управления может двигаться только в одном направлении - под откос. Помимо непрерывности есть и ряд других требований к управлению, например, требование определенной свободы («люфта») в действиях исполнителей, требований устойчивости и гибкости (означающее, что в случае необходимости можно провести корректировки ранее намеченного плана с минимальными потерями), оптимальности и некоторые другие.


Решение. Обычно одну и ту же задачу можно решить разными способами. Однако качество исхода операции, то есть значения ее результатов, зависит не только от качества активных ресурсов и условий их применения, но и от качества способа задействования этих ресурса в этих условиях. В этой связи в данном курсе слово «решение» чаще всего будет интерпретироваться как наилучший способ разрешения проблемы, стоящей перед ЛПР, как наиболее предпочтительный способ достижения намеченной ЛПР цели. Следовательно, значение слова «решение» в нашем случае будет несколько отличаться от того значения, которое ему приписывается, например, в математике, когда говорят о решении математической задачи.

В математике правильное решение правильно поставленной задачи всегда одно и то же, независимо от того, как и в каких условиях эту задачу решает. Математическое решение всегда объективно. В отличие от него решение проблемы - субъективно, так как разные ЛПР могут выбрать разные, понравившиеся именно им способы разрешения проблемы. Да к тому же условия решения проблемы накладывают существенный отпечаток на выбор ЛПР: одно и то же ЛПР в разных условиях может предпочесть в общем случае неодинаковый способ устранения проблемы.

Цель. Формализованное описание того желаемого состояния, достижение которого отождествляется в сознании ЛПР с решением проблемы или задачи. Цель описывается в виде требуемого результата.

Альтернатива. Это условное наименование какого-то из возможных (допустимых в соответствии с законами природы и предпочтениями ЛПР) способов достиже­ния цели. Каждая отдельная альтернатива отличается от других способов решения проблемы последователь­ностью и приемами задействования активных ресур­сов, то есть специфическим набором указаний кому, что, где, с помощью чего и к какому сроку сделать. Активные ресурсы - это все то, что может быть исполь­зовано ЛПР для решения проблемы. Главными из ак­тивных ресурсов всегда будем считать людей, время, финансы (деньги) и расходные материалы, имеющиеся в распоряжении ЛПР.

Результат. Под результатом будем понимать специаль­ную форму описания наиболее важных для ЛПР ха­рактеристик исхода операции. При исследовании опе­рации степень предпочтительности (или, наоборот, не предпочтительности) ее результатов представля­ют в наиболее подходящей для этого шкале: число­вой, количественной или качественной. Пусть, на­пример, в качестве исходов финансовой операции рассматривают «победу» и «поражение». В таком слу­чае можно будет измерять результаты операции, на­пример, или в количествах реализованной прибыли, приобретенных акций и других ценных бумаг (коли­чественная шкала), или в отношении интенсивнос­ти проявления исхода, например «грандиозная по­беда», «незначительное поражение», «значительное поражение» (качественная шкала), или в отношении порядка следования исходов - первая победа, вто­рая победа, третья победа (числовая шкала). Тип шкалы выбирается в зависимости от цели измерения результатов; об этом более подробно будет сказано позже.

Модель. Реальный мир сложен и многообразен. Для его изучения или познания требуется много творческих усилий и времени. Вместе с тем, для разработки реше­ний часто ЛПР достаточно знать в изучаемом объекте или явлении не все, а лишь существенные свойства, особенности, закономерности, важные для решения проблемы. В целях экономии активных ресурсов, прежде всего, времени, было изобретено моделирование. Это специальный подход к изучению реальной действительности, когда ЛПР отбрасывает излишне подробные детали изучаемого объекта или явления, оставляет лишь наиболее существенные его черты. Нужно только требовать и следить, чтобы такое упрощение не было огульным. Важно, чтобы по результатам и изучения оставшихся после упрощения фрагментов облика, свойств и связей можно было бы сделать правильные выводы для принятия решений. Только в таком случае моделирование окажется действительно полезным. В результате все существенные для разработки решений реальные объекты и явления ЛПР заменяет компактными, выразительными и удобными для описания, хранения и другого использования упрощенными образами. Подобные упрощенные образы называют моделями. Таким образом, модель сохраняет все важное, что нужно обязательно учесть, вырабатывая решения, однако форма представления модели выбирается такой, чтобы процесс разработки решения был бы эффективным. Следует иметь в виду, что моделирование проводится с разными целями. Вот перечень наиболее часто встречающихся целей моделирования:

§ изучить какой-то элемент реальной действительности - дидактические и исследовательские модели;

§ отработать какой-то элемент практических действий - тренировочные и игровые модели;

§ оптимизировать какой-либо процесс, форму или содержание чего-либо - оптимизационные модели;

§ делегировать полномочия на совершение определенных действий другими лицами - модели предпочтений.

Каждой цели моделирования можно поставить в соответствие наиболее предпочтительную форму построения и представления модели. Например, модель может быть сформирована описательно, то есть словами.

Такие модели называют вербальными. Элементы реаль­ной действительности и связи между ними можно так­же представить с помощью символов или знаков. Это - семиотические модели. Кроме того, с детства каждому знакомы физические копии предметов и объектов - игрушки. И каждый в детстве играл в игры: в войну, школу, какую-то профессию, то есть моделировал по­ведение в реальной действительности. Каждый из нас когда-то что-то рисовал, выражая свои мысли об уви­денном или услышанном. Эти графические изображе­ния - рисунки, схемы, карты местности и т.п. - так­же модели, то есть - упрощенные образы реальной действительности.

Для каждой из перечисленных моделей характерен свой собственный, вполне определенный набор свойств. Вер­бальные модели обладают высокой информационной емкостью (вспомните хотя бы величайшее произве­дение Л.Н. Толстого «Война и мир»), но их трудно ис­пользовать для преобразования информации или ре­шения расчетно-аналитических задач. Семиотические модели в зависимости от конкретной формы исполь­зования тех или иных знаков и символов - схемы, графики, логические диаграммы, математические урав­нения и неравенства - хороши, например, для ин­формационных и оптимизационных задач, для пред­ставления их средствами вычислительной техники. Игровые модели (политические, экономические, соци­альные и деловые игры) занимают особое место. С по­мощью игровых моделей удобно исследовать механиз­мы поведенческой неопределенности. При разработке управленческих решений в экономике наиболее час­то используют вербальную и графическую формы мо­делей. Для повышения обоснованности и доказатель­ности решений применяют математические и игро­вые модели.

Нa основе системного анализа порядка работы руково­дителя предприятия (фирмы) при разработке решений разработана графическая модель процесса управления. Эта модель представлена на рис.1.1.

Условия разработки решений. Каждая проблема всегда связана с конкретной обстановкой, ситуацией и вполне определенным комплексом условий. Проблема всегда решается в рамках существующего положения вещей. Анализируя тот или иной способ достижения цели ЛПР должно четко представлять закономерности, связывающие ход и исход операции с принятыми решениями. Совокупность представлений об этих закономерностях, конечно, воспринимается ЛПР в упрощенной, модельной форме. Некоторые из закономерностей удается фиксировать в строго формальном виде. Например, законы Ньютона в механике описывают в математической форме взаимосвязи в цепочке «масса-сила-ускорение».

Рис.1.1. Графическая модель процесса управления

В ТПР модель закономерностей в цепочке «решение-исход» называют «механизмом ситуации». При этом считают, что модельное упрощение связей в указанной цепочке ни в коем случае не означает их отбрасывания.

Имеется в виду, что из всего многообразия связей и закономерностей в модель включают лишь те, которые имеют преобладающее значение, то есть вносящие наиболее значительный вклад в формирование результата. Например, при оценке времени t падения тела в атмо­сфере Земли с высоты h нужно учитывать, строго гово­ря, влияние и веса, и формы падающего тела, и возмущений атмосферы (ветер), однако в значительном диа­пазоне значений высоты h можно считать, что только высота как ведущий фактор определяет «механизм си­туации». В таком случае связь между h и t будет упро­щенно однозначной, а именно: h = 0.5 g t 2 .

В ТПР рассматривают только два типа модельных свя­зей в «механизме ситуации»: однозначные и неодно­значные.

Однозначные связи порождают устойчивое и вполне оп­ределенное соотношение между реализуемым решени­ем и исходом от его реализации. И как только задан спо­соб действий, так исход и связанные с ним результаты сразу становятся вполне определенными (как в нашем примере с оценкой времени падения с заданной высо­ты). Подобные «механизмы ситуации», в которых ожида­емый исход наступает практически всегда, а вероятность иных (неожиданных для ЛПР) исходов пренебрежитель­но мала, будем называть нерискованными ситуациями, детерминированными механизмами ситуации или условиями определенности.

Многозначными считают такие связи между способом и ис­ходом операции (рискованные ситуации, или условия неопределенности), в рамках которых при многократ­ном воспроизведении одной и той же альтернативы воз­можно появление разных исходов. При этом степени возможности появления тех или иных исходов и резуль­татов вполне соизмеримы (то есть нельзя какие-то ис­ходы считать крайне мало возможными по сравнению с другими).

Наиболее выразительная модель «механизма ситуации» с многозначной связью между альтернативой и исхо­дом - случайный механизм наступления страховых случаев. Даже при страховании одним и тем же страховщиком нескольких одинаковых объектов возможны два исхода: «наступление страхового случая» или «не­наступление страхового случая». А если с наступлением страхового случая связать количество объектов страхования, то в результате получается несколько возможных значений оплачиваемой страховой суммы объектов страхования. Это типичный механизм стохастической (случайной) неопределенности, а взаимодействие с конкурентами - поведенческой.

Но бывают и более сложные ситуации. Например, может не оказаться данных о вероятностях наступления тех или иных исходов, хотя и известно, что в операции главными являются случайные факторы. Или может оказаться, что нет никаких данных о возможных альтернатив поведения других субъектов, вовлеченных в операцию ЛПР, хотя известно, что эти лица будут предпринимать какие-то действия для достижения целей. Наконец, может быть просто неясна или неизвестна природа явлений и событий, происходящих в операции. «Механизмы» всех подобных ситуаций будем относить к классу природно-неопределенных. Перечень понятий, используемых в ТПР, не ограничивается данным представлением. По мере изложения материала в соответствующих местах будут введены там важные понятия, как проблемная ситуация, эффектность решения, эксперт, критерий, предпочтения, наилучшее решение и др.

Лекция 2. Проблема принятия решения. Основные понятия теории принятия решений

Основные понятия, включенные в систему тренинг-тестирования:

Проблема; ЛПР; цель; операция; результат; модель; управление; решение; условия; альтернатива; критерий; наилучшее решение; однозначные связи; многозначные связи; оценка критерия; эффективность решений; субъективные факторы принятия решений; объективные факторы принятия решений; концепции ТПР; принципы ТПР

Основные понятия и определения.

Изучение любой науки требует определения используемых в ней терминов. В данном пособии используются следующие основные понятия: проблема, ЛПР, цель, операция, результат, модель, управление, решение, условия, альтернатива, критерий, наилучшее решение .

Проблема . Проблема - начальный пункт потребности в выработке и принятии решений. Понятие проблемы раскрывается через ощущение субъектом некоего дискомфорта. Обычно субъект ощущает проблему как своеобразное расхождение между тем, что он желал бы иметь или чего бы хотел достигнуть (желательное состояние), и тем, что он реально имеет в настоящий момент (действительное состояние).

Проблема, естественно, требует решения. Однако далеко не каждая проблема может быть решена имеющимися в распоряжении индивида средствами. Поэтому в понятие проблемы включается не только потребность в устранении дискомфорта, но и реальные возможности для решения проблемы. В общем случае ресурсы (иногда говорят активные ресурсы, имея в виду возможность направления их на осуществление той или иной акции) означают все то, что может быть использовано для достижения цели. Главными из ресурсов всегда являются люди, время, финансы (деньги) и расходные материалы для намечаемой деятельности.

ЛПР . Под лицом, принимающим решения (ЛПР), понимается субъект, который всерьез намерен устранить стоящую перед ним проблему, выделить на ее разрешение и реально задействовать имеющиеся у него активные ресурсы, суверенно воспользоваться положительными результатами от решения проблемы или взять на себя всю тяжесть ответственности за неуспех, неудачу, напрасные расходы.

Цель . Формализованное описание того желаемого состояния, достижение которого отождествляется в сознании ЛПР с решением проблемы. Цель описывается в виде требуемого результата, как правило, векторного (т.е. характеризуемого несколькими компонентами или параметрами). Компонентами вектора требуемого результата чаще всего выступают показатели затрат (человеческий труд, время, деньги, материалы и др.) и эффекта (имидж, прибыль, надежность и др.).

Операция - любая целенаправленная деятельность, любой комплекс мероприятий, осуществляемых ЛПР в интересах достижения намеченной цели.

Результат . Под результатом будем понимать специальную форму представления (описания) наиболее важных для ЛПР характеристик исхода операции. При исследовании операции ее результаты представляют в наиболее подходящей для этого шкале. Если, например, исходами коммерческой операции приняты "прибыль" и "убытки", то предпочтительность (или, наоборот, непредпочтительность) указанных исходов можно будет измерять, например, или в количественной шкале (в денежном выражении), или в качественной шкале (например, с градациями "критический", "низкий", "средний", "высокий").

Модель . Любой удобный для изучения упрощенный образ объектов реальной действительности. Такой образ может быть сформирован описательно, то есть словами (вербальная модель ), может быть представлен с помощью символов или знаков (семиотическая модель ), может быть физической копией , графическим изображением на экране монитора (например, электронная карта города).

Следует иметь в виду, что слово "модель " многозначно и часто используется в значении "общепринятый (или - "утвержденный лицом, принимающим решения") образец для подражания" (то есть повторения на практике). В этом смысле уместно употребление таких терминов, как "модель мироздания", "модель операции", "модель системы предпочтения ЛПР" и т. п.

Выбор типа модели должен основываться на понимании того, зачем нужна модель, с какой целью производят моделирование. Это позволит правильно определиться в уникальном сочетании требуемых характеристик, свойств модели и выйти на подкласс моделей, которые в наибольшей степени отвечают требуемым свойствам. Для исследовательских моделей, которые нужны, чтобы изучить какой-то научный феномен, и с которыми работают узкие специалисты, не нужно ни особой наглядности, ни компактности, но зато важны точность и быстродействие; для оптимизационных моделей главное скорость и точность отыскания экстремума функции; для дидактической модели - этичность, эстетичность, доходчивость, яркость (выразительность), доступность (например, цена), - важнейшие свойства, а особой точности от нее не требуется.

Итак, для каждого типа моделей характерен свой собственный, вполне определенный набор свойств. Вербальные модели обладают высокой информационной репрезентативностью, но их трудно использовать для преобразования информации или решения расчетно-аналитических задач. Семиотические модели в зависимости от конкретной формы использования тех или иных знаков и символов могут быть, например, графическими , логическими , математическими . С помощью математических моделей удобно решать, например, информационные и оптимизационные задачи. Логические модели широко используются при построении баз знаний.

Учитывая особую роль математических моделей в процессе принятия решений, приведем классификацию данных моделей (Рис. 1.1).

Рис.1.1. Классификация математических моделей

Особое место занимают так называемые игровые модели - политические, экономические, социальные, развлекательные, военные и деловые игры. С помощью игровых моделей удобно исследовать механизмы поведенческой неопределенности.

Управление . Решение проблемы, стоящей перед ЛПР, возможно только путем направления и задействования активных ресурсов для исполнения конкретных заданий или работ. Персоналу необходимо указать, где, когда, что и с помощью чего сделать, каковы требования к качеству выполняемых заданий или работ, каковы допустимые отклонения от намеченных заданий и при каких форс-мажорных обстоятельствах следует принять экстренные меры, каковы эти меры, и пр. Все вышесказанное объединяется понятием "управление".

Управлять - значит направлять кого-либо или что-либо к намеченной цели для достижения желаемого результата. Управление - это процесс, протекающий во времени. Главное требование к качеству управления - это его непрерывность .

Помимо непрерывности есть и ряд других требований к управлению, например требование определенной свободы ("люфта") в действиях исполнителей, требования гибкости (возможности корректировки в случае необходимости ранее намеченного плана с минимальными потерями), оптимальности и некоторые другие.

Решение . Качество исхода предпринятых ЛПР действий зависит не только от качества имеющихся ресурсов и условий их применения, но и от качества способа их задействования . Обычно одну и ту же задачу можно решить разными способами.

Чаще всего слово "решение" употребляется как конкретный, наилучший способ устранения проблемы, который выбирает ЛПР.

Альтернатива . Это условное наименование какого-то из возможных (допустимых в соответствии с законами природы и предпочтениями ЛПР) способов достижения цели. Каждая отдельная альтернатива отличается от других способов решения проблемы последовательностью и приемами задействования активных ресурсов, то есть специфическим набором указаний исполнителям о частных целях и путях их достижения.

Условия . Каждая проблема всегда связана с определенным комплексом условий ее разрешения. Анализируя тот или иной способ достижения цели, ЛПР должно четко представлять закономерности, связывающие ход и исход процесса выполнения задачи с принятыми решениями. Совокупность представлений об этих закономерностях, выраженных в упрощенной модельной форме, будем называть механизмом ситуации . При этом будем считать, что указанное упрощение связей означает, что из всего их многообразия выделяются лишь вносящие наиболее значительный вклад в формирование результата.

В принципе модельных типов связей в механизме ситуации только два: однозначные и неоднозначные .

Однозначные связи порождают устойчивое и вполне определенное соотношение между реализуемым решением и исходом его реализации. Исход здесь вполне определен, как только указан способ действий. Например, если из одного источника финансирования фиксированная сумма денег направляется к двум потребителям поровну, то ясно, что каждый из них может получить не более половины от выделенной суммы; если увеличить количество транспортных средств общественного пользования, то уменьшится средняя загруженность транспорта и т.п. Подобные механизмы ситуации, в которых ожидаемый исход наступает практически всегда, а вероятность альтернативных исходов пренебрежимо мала, будем называть детерминированными .

Многозначные связи между способом и исходом решения проблемы - это такие связи, в рамках которых при многократном задействовании одного и того же фиксированного способа решения проблемы не только в принципе возможно появление разных исходов (результатов), но и степени возможности указанных альтернативных исходов соизмеримы (нельзя какие-то исходы считать крайне маловероятными по сравнению с другими). Рассмотрим три достаточно легко интерпретируемых примера подобных механизмов.

А) Проверка качества изделий с помощью ограниченной по объему случайной выборки. Процент выявленных при этом бракованных изделий является случайной величиной (применением специальных методов контроля можно, конечно, существенно повысить точность оценки).

Б) Покупка акций с целью наилучшим образом вложить свободные деньги. Через некоторое время эти акции под действием механизма формирования конъюнктуры на рынке ценных бумаг могут дать доход, а могут принести финансовый крах.

В) Посев теплолюбивой сельскохозяйственной культуры в средней полосе. В зависимости от погодных условий предстоящего летнего сезона урожай может быть совершенно различным.

Общим для представленных трех примеров является то, что связи в цепочках "решение-результат" неоднозначны. Однако природа механизма этой неоднозначности разная. В первом примере - это случайность , во втором - неопределенное поведение других субъектов на рынке ценных бумаг, в третьем - природная неопределенность .

Таким образом, в дальнейшем будем ориентироваться на два основных типа механизма ситуации: детерминированный (условия определенности) и неопределенный (условия неопределенности), уточняя при необходимости природу явлений, порождающих неопределенность.

Критерий (от греч. kritеriоп- - "мерило для оценки чего-либо") позволяет оценить эффективность решения ЛПР. На данном этапе достаточно иметь в виду, что критерий - это значимая (важная , существенная ), понятная ЛПР, измеримая и хорошо им интерпретируемая характеристика возможных исходов операции. Именно с помощью критерия ЛПР судит о предпочтительности исходов, а значит, и способов проведения операции по решению проблемы.

Иногда функциональное преобразование результата в критерий производят так, чтобы большие значения критерия соответствовали большей предпочтительности значений результата.

Выбор критерия представляет собой сложный процесс. Но совершенно точно можно назвать критерии, без которых практически невозможно оценивать предпочтительность исходов любой экономической или коммерческой операции. Это такие критерии, как время , затраты , прибыль , эффективность .

Значения, которые принимает критерий и которые отражают в сознании ЛПР степень предпочтительности или непредпочтительности тех или иных свойств исхода операции, будем называть или показателем , или оценкой критерия, или просто - оценкой . Оценки критерия выражаются в принятых для их измерения специальных шкалах.

Наилучшее решение представляет собой ту из альтернатив среди имеющихся вариантов достижения цели, которая рассматривается ЛПР как самый главный претендент на звание "решение". Наилучшее решение определяют на основе выявления и измерения личных предпочтений ЛПР. Вербально "наилучшее решение" можно определить как альтернативу, которую ЛПР устойчиво выделяет среди других, которую он постоянно предпочитает любой другой из имеющихся альтернатив. Однако в ТПР допускают, что наилучших решений может быть несколько. При этом полагают, что они все между собой одинаковы по предпочтительности (эквивалентны). Множественность наилучших альтернатив возникает из невозможности их различить при данном уровне детализации предпочтений ЛПР. Следовательно, для выделения единственной наилучшей альтернативы есть только один путь - последовательное уточнение предпочтений ЛПР по дополнительным аспектам (так называемый принцип вложенных отношений ).

Министерство образования и науки Украины

Запорожская государственная инженерная академия

Теория принятия решений

Учебно-методическое пособие

Ю.О. Матузко

2.1 Постановка задачи

2.2 Критерий Байеса

2.4 Критерий Гермейера

2.5 Критерий Ходжа-Лемана

3.1 Принцип максимина

3.2 Критерий азартного игрока

3.3 Критерий произведений

3.4 Критерий Сэвиджа

3.5 Критерий Гурвица

4.1 Матричные игры

4.3 Матричные игры, разрешимые в смешанных стратегиях

4.3.1 Постановка задачи

4.3.2 Решение задачи симплекс-методом

4.3.3 Решение задачи графическим методом

Раздел 5. Принятие решения в условиях нескольких критериев выбора40

5.1 Постановка задачи, основные понятия

5.2 Линейные свёртки

5.3 Максиминная и лексикографическая свёртки

5.4 Мультипликативные свёртки

5.5 Многокритериальный выбор на языке бинарных отношений

Раздел 6. Принятие корпоративных решений

6.1 Групповая оценка объектов

6.2 Определение коэффициентов компетентности экспертов

Раздел 7. Критерии модульного оценивания знаний

Раздел 8. Задания для самостоятельной работы студентов

8.1 Домашняя контрольная работа

8.2 Вопросы к модульным тестированиям

8.3 Контрольные вопросы к экзамену по дисциплине


Ведение

Дисциплина "Теория принятия решений" читается студентам специальности "Автоматизированное управление технологическими процессами". Такой специалист по окончании учебы должен уметь выдать заказчику законченный программно-алгоритмический продукт, который будет автоматизировать процесс принятия решений в конкретном технологическом процессе, описанном заказчиком. Заказчик в таких случаях может представлять различные отрасли народного хозяйства: он может быть химиком, металлургом, строителем, экономистом, электронщиком и т.п. Главное, чтобы его технологический процесс, в котором нужно принимать решения, был успешно автоматизирован. Предлагаемый курс дает теоретические и практические основы математически обоснованного процесса принятия решений. Рассматриваемые в данном пособии задачи носят чисто абстрактный характер по своему текстовому условию. Главное в них – это количественные и качественные методы решения поставленной проблемы принятия решений, которые могут быть применены к различным отраслям.

В пособии охвачена лишь общая часть дисциплины "Принятие решений". Дело в том, что предмет "Теория принятия решений" читается студентам на протяжении всего двух календарных месяцев. Автор по возможности попытался за столь короткий срок охватить наиболее общие и значимые понятия и методы довольно широкой дисциплины "Принятие решений". Более детальную информацию по дисциплине можно получить из специальной литературы, указанной в пособии.

Данное учебное пособие содержит критерии модульного оценивания знаний, задания домашней контрольной работы, вопросы к модульным тестированиям, а также контрольные вопросы к экзамену по предмету "Теория принятия решений".

Раздел 1. Основные понятия и структура исследования операций

Принимать решения, как отдельному человеку, так и различным группам людей, вплоть до всего человечества приходится практически во всех областях своей деятельности. Единственное, чего мы не выбираем, следуя народной мудрости, так это родителей и Родины. Причем в некоторых областях (военных, медицинских, космических, в атомной энергетике, химической промышленности и др.) возникает потребность принятия достаточно сложных управленческих решений, ошибка в которых может повлечь за собой катастрофические последствия. В силу этого появилась необходимость выделить процесс принятия оптимальных решений в отдельную область науки, которая бы формализовала и систематизировала данный процесс.

Исторически считается, что это произошло в начале 40-х годов ХХ века, когда группа английских ученых математически сформулировала и нашла решение задачи об оптимальном способе доставки на фронт войск, оружия и снаряжения. И сразу же стали интенсивно поступать заказы на решение новых военных задач. Позднее эти исследования были перенесены и на гражданскую сферу и обобщены в отдельную науку – исследование операций .

Исследование операций стала основным научным инструментом при принятии оптимальных решений в самых разнообразных областях человеческой деятельности. Специалиста в этой науке в литературе обычно называют аналитиком (или системным аналитиком, или лицом, принимающим решение (далее ЛПР)).

Дадим некоторые основные определения и обозначим ориентировочное структурное строение исследования операций. Даная структура также отражает этапы, которые должен последовательно пройти ЛПР при принятии решения.

1 этап. Постановка (формулировка) задачи (проблемы).

На этом этапе аналитик должен трансформировать слова заказчика "хочу, чтобы было так" в четко сформулированную задачу. В 99% случаях заказчик не только не может предоставить, но и понятия не имеет о тех данных, которые необходимы аналитику для успешного разрешения проблемы. Оно и понятно – ведь у него нет соответствующего образования. (На самом деле, такое образование заказчику и не нужно, ведь он обратился к грамотному специалисту-аналитику, выпускнику ЗГИА! -) Все необходимое аналитик должен добыть себе сам. Так будет лучше по всем показателям – и по времени и, что немаловажно, по искажению информации (формулировка задачи с чьих-то слов уже априори чревато ошибками). Аналитику необходимо увидеть и изучить проблему "изнутри", для этого ему нужно "внедриться" в сложившуюся ситуацию. Зачастую аналитику надо "внедриться" и поработать на всех ключевых постах в организации заказчика, столкнувшейся с проблемой. На это может уйти от нескольких дней до месяцев.

2 этап. Построение математической модели задачи.

Здесь четко поставленная и сформулированная жизненная проблема формализуется математически.

1) Определяются переменные – переменные величины (их может быть как несколько, так и одна), изменение которых влияет на конечный результат задачи. Наборы различных конкретных значений переменных называются альтернативами (также во многих литературных источниках набор переменных называется планом ).

2) Определяются ограничения , которые накладываются на переменные. Пересечение всех полученных ограничений задает допустимое множество . Набор переменных, которые удовлетворяют всем ограничениям, называется допустимым планом .

3) Определяется критерий, по которому должны отбираться альтернативные решения (планы). Такой критерий называется целевой функцией .

Задача состоит в том, чтобы найти такой набор переменных (выбрать такую альтернативу), чтобы они принадлежали допустимому множеству (т.е. удовлетворяли всем ограничениям задачи) и чтобы целевая функция от этих переменных принимала свое оптимальное значение. Такой набор переменных называется оптимальным планом. Понятно, что оптимальный план должен быть допустимым, поэтому и ищется оптимальный план только среди допустимых планов.

Описанными первыми двумя этапами занимается дисциплина "математическое моделирование ", являющаяся составной частью исследования операций.

3 этап. Решение математической модели задачи.

Решением математических моделей задач занимается дисциплина "математическое программирование ".

В исследовании операций нет единого общего метода решений всех математических моделей. Многолетние исследования позволили обобщить и сгруппировать схожие типы моделей в определенные классы задач. Методы решения данных классов задач составляют отдельные разделы математического программирования, со временем они даже трансформировались в отдельные дисциплины. Дадим краткий обзор некоторых из них.

1) Линейное программирование . В этом классе задач и целевая функция и все ограничения являются линейными функциями. К таким задачам относятся:

задача о плане производства;

задача о диете;

2) Целочисленное программирование . В этих задачах целевая функция и все ограничения также являются линейными. Все переменные должны принимать только целочисленные значения. К таким задачам относятся:

транспортная задача;

задача о назначениях;

3) Динамическое программирование . Применяется, когда исходную задачу можно разбить на меньшие подзадачи и решать их пошагово. К таким задачам относятся:

задача коммивояжера;

задача об управлении запасами;

задача о ранце;

4) Нелинейное программирование . В этом классе задач либо целевая функция, либо все или некоторые ограничения являются нелинейными функциями.

Еще раз акцентируем внимание, что выше приведены лишь некоторые основные разделы математического программирования. Кроме указанных разделов еще существуют теория графов, теория расписаний, сетевое планирование, системы массового обслуживания, теория марковских процессов и др. Каждый раздел математического программирования – это отдельная сформировавшаяся дисциплина, требующая достаточно углубленного теоретического и, особенно, практического изучения.

4 этап. Принятие решений.

На этой стадии аналитик (лицо, принимающее решение) на основе пройденных предыдущих этапов должен принять оптимальное решение. Это и является предметом изучаемого курса "Теория принятия решений ".

Само собой разумеется, что студенты, приступившие к изучению курса "Теория принятия решений" ранее должны были изучить и, что немаловажно, успешно сдать и математическое моделирование, и математическое программирование. Без этого необходимого условия ЛПР вряд ли примет оптимальное решение. Невозможно ведь учиться в пятом классе, до этого не выучив во втором классе таблицы умножения! Равно как и невозможно быть директором роддома, не зная, откуда берутся дети.

Принятие решения – это задача управленческого типа. Под ней понимается задача выбора лицом, принимающим решение (ЛПР) наилучшего способа (исхода) из некоторого конечного множества допустимых вариантов (альтернатив). После принятия решения изучаемая система переходит в новое состояние, на которое будет реагировать окружающая среда. Окружающей средой может быть военная, экономическая, финансовая, техническая или какая-либо другая обстановка. При этом возможны такие случаи:

1) ЛПР знает реакцию окружающей среды на выбор им той или иной альтернативы, т.е. он знает насколько "полезной" или "вредной" для его системы будет реакция окружающей среды на выбор им той или иной альтернативы. Такая ситуация называется задачей принятия решения в условиях определенности . В условиях определенности математическое программирование дает точное решение поставленной задачи. Поэтому необходимости выбирать из нескольких вариантов попросту нет. Таким образом, в условиях определенности "Теория принятия решений" не используется, такими задачами занимается математическое программирование.

2) ЛПР знает вероятность реакции окружающей среды на выбор им той или иной альтернативы. Такая ситуация называется задачей принятия решения в условиях риска.

3) ЛПР ничего не знает о реакции окружающей среды на выбор им той или иной альтернативы. Такая ситуация называется задачей принятия решения в условиях неопределенности .

При этом предполагается, что в перечисленных случаях окружающая среда реагирует на принятое ЛПР решение беспристрастно (как природа), не преследуя никаких своих целей.

4) Однако зачастую бывают ситуации, когда в качестве окружающей среды может выступать, например, конкурирующая фирма, военный противник, конкурент на выборах и т.п. В этом случае такая окружающая среда будет реагировать уже совсем не беспристрастно, а сугубо в своих интересах. Такая ситуация называется задачей принятия решения в условиях противодействия .

Раздел 2. Принятие решения в условиях риска

2.1 Постановка задачи

Рассмотрим следующую ситуацию.

Представьте что вы – глава пенсионного фонда Украины. На счета пенсионного фонда Украины поступают налоговые отчисления по достаточно большой процентной (большей, чем в большинстве развитых странах) ставке. По расчетам этих денег должно хватить на выплату пенсий сегодняшним пенсионерам и на накопление для выплат сегодняшним налогоплательщикам, по достижении ими пенсионного возраста. Ваша непосредственная обязанность, как главы пенсионного фонда обеспечить выполнение этих двух задач. Первая задача – выплата текущих пенсий – это чисто техническое задание. Будем считать, что с ним вы блестяще справитесь.

А что делать с накоплениями? Если эти деньги не трогать и "заморозить", то через несколько лет ввиду инфляции сегодняшний налогоплательщик получит сущие гроши. Естественным выходом (так делают во всем мире) будет эти средства во что-нибудь вложить (инвестировать).

Допустим, что вы, как инвестор, имеете возможность вложить средства пенсионного фонда Украины в один из четырех финансовых институтов: акции кампании г-на Сороса, в депозит BankofAmerica, в облигации госказначейства США и в золото. Эти четыре альтернативы (ваши возможные стратегии) обозначим А1, А2, А3, А4 .

Допустим, окружающая среда (В), в данном случае, ситуация на финансовом рынке на момент завершения депозита может принять одно из пяти определенных состояний. Эти пять состояний обозначим В1, В2, В3, В4, В5 .

Из многолетних статистических данных известны приближенные вероятности (Q) этих состояний: q1, q2, q3, q4, q5 .

Инвестиционная привлекательность проекта вложения средств определяется как конечная рентабельность. Оценка рентабельности считается известной для каждой стратегии инвестора и каждого состояния окружающей среды. Эти данные представлены в матрице, называемой матрицей выигрышей инвестора (игрока А),

где аij – это рентабельность инвестиционного проекта при выборе Аi-той альтернативы и при Вj-том состоянии окружающей среды.

От вас, как главы пенсионного фонда Украины, требуется выбрать наилучший вариант вложения средств налогоплательщиков.

Отметим, что понятие наилучшего исхода в различных условиях трактуется по-разному. Для различных условий принятия решений разработаны различные критерии выбора ЛПР наилучшего исхода. Решим данную задачу с помощью различных критериев.

2.2 Критерий Байеса

Критерий Байеса (принцип математического ожидания) предполагает полное доверие ЛПР известным вероятностям состояний окружающей среды. Следовательно, данная задача – это задача принятия решения в условиях риска.

Показатель эффективности стратегии Аi по критерию Байеса находится по формуле:

гдеm – количество строк матрицы, заданной в условии;

n – количество столбцов матрицы, заданной в условии;

qj – заданные вероятности;

аij – элементы матрицы, заданной в условии.

Заметим, что – это математическое ожидание стратегии Аi . Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения математических ожиданий всех стратегий:

0,33 + 0,27 + 0,153 + 0,115 + 0,256 = 0,6 + 1,4 + 0,45 + 1,5 + 1,5 = 5,75

Далее в добавленном столбце нужно найти наибольший элемент (наибольшее математическое ожидание). Строка, в которой он стоит и будет оптимальной стратегией. Необходимо заметить, что наибольших элементов может быть несколько, тогда и оптимальных стратегий соответственно будет несколько.

В нашем случае наибольший элемент 5,95 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. средства фонда вам нужно вложить в третий проект.

Ответ А3 .

2.3 Критерий Лапласа (Бернулли)

Критерий Лапласа (принцип недостаточного основания) предполагает недоверие ЛПР известным вероятностям состояний окружающей среды. Вероятности состояний окружающей среды считаются одинаковыми и равными . Следовательно, данная задача – это задача принятия решения в условиях риска с вероятностями .

Показатель эффективности стратегии Аi по критерию Лапласа находится аналогично критерию Байеса с вероятностями :

Заметим, что нет необходимости вычислять эти математические ожидания. Достаточно просто просуммировать элементы строк матрицы и выбрать из них максимальную сумму:

Для случая оптимизации потерь критерий будет таким:

Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения сумм элементов строк всех стратегий:

Далее в добавленном столбце нужно найти наибольший элемент. Строка, в которой он стоит и будет оптимальной стратегией. Необходимо заметить, что наибольших элементов может быть несколько, тогда и оптимальных стратегий соответственно будет несколько.

В нашем случае наибольший элемент в добавленном столбце 34 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А1 , т.е. инвестор должен выбрать для вложения первый проект.

Ответ А1 .

2.4 Критерий Гермейера

Критерий Гермейера применяется для задач принятия решений в условиях риска.

Он применяется в основном для решения задач выбора для оптимизации величины потерь или затрат. Такие задачи довольно часто встречаются в хозяйственной практике. Матрица потерь, задаваемая в условии, будет содержать отрицательные элементы (потери выражаются отрицательными величинами). Если в матрице помимо отрицательных будут и положительные элементы, то исходная матрица потерь преобразуется в матрицу, содержащую только отрицательные элементы по правилу:

где с – некое выбранное ЛПР положительное число.

Следует иметь в виду, что оптимальное решение зависит от выбора с.

Критерий Гермейера применяется и для оптимизации величины прибыли (как в нашей задаче), т.е. для положительных матриц.

В общем случае Гермейер предложил ввести в рассмотрение матрицу с такими элементами:

Таким образом, новую матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести наименьшие значения элементов каждой строки.

В нашем случае наибольший элемент в добавленном столбце 16 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения третий проект.

Ответ А3 .

2.5 Критерий Ходжа-Лемана

Критерий Ходжа-Лемана привносит фактор определенной субъективности при принятии решения.

Решение принимается в условиях риска. Однако у ЛПР есть некое недоверие к распределению вероятностей состояний окружающей среды. Поэтому ЛПР вводит некий "коэффициент доверия" l к вероятностям состояний окружающей среды (0 £l£ 1). Чтобы сильно не рисковать, обычно таким коэффициентом берут 0,4. Этот коэффициент ещё называют уровнем оптимизма.

Показатель эффективности стратегии Аi по критерию Ходжа-Лемана находится по формуле:

Z = ,

#Для случая оптимизации потерь критерий будет таким:

Z = #

Таким образом, исходную матрицу необходимо дополнить справа еще тремя столбцами. В первый нужно внести значения математических ожиданий всех стратегий, умноженных на уровень оптимизма l = 0,4. Во второй нужно внести значения наименьших элементов всех строк, умноженных на уровень пессимизма 1 – l = 1 – 0,4 = 0,6 . В третий добавленный столбец внесем сумму значений первых двух добавленных столбцов:

Пример вычислений для первой строки:

0,4  (0,33 + 0,27 + 0,153 + 0,115 + 0,256) = 0,4  5,75 = 2,3

0,6  3 = 1,8

В нашем случае наибольший элемент 4,78 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор для вложения должен выбрать третий проект.

Ответ А3 .

Раздел 3. Принятие решения в условиях неопределенности

3.1 Принцип максимина

Решим поставленную выше задачу при принятии решения в условиях неопределенности. В таких условиях также нет единой трактовки понятия наилучшего исхода. Поэтому данную задачу тоже будем решать с помощью различных критериев.

Принцип максимина (критерий Вальда) предполагает полное недоверие ЛПР известным вероятностям состояний окружающей среды. Либо же вероятности состояний окружающей среды считаются неизвестными. Следовательно, данная задача – это задача принятия решения в условиях неопределенности.

При неопределенности выбор наилучшей стратегии может основываться на введении различных разумных гипотез о поведении окружающей среды.

Одна из важнейших и основополагающих гипотез такого типа называется гипотезой антагонизма. Она состоит в предположении, что окружающая среда ведет себя наихудшим для ЛПР образом. На этой гипотезе основывается принцип максимина, называемый также принципом гарантированного результата.

Показатель эффективности стратегии Аi по критерию максимина находится по формуле:

Для случая оптимизации потерь критерий превратится в минимаксный и будет таким:


Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения минимальных элементов каждой строки.

Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.

Выбранные таким образом альтернативы полностью исключают всякий риск! Это означает, что ЛПР не может столкнуться с худшим результатом, чем тот на который он ориентируется. В силу этого принцип максимина является принципом крайнего пессимизма ЛПР (принципом наибольшей осторожности).

Как бы ни вела себя окружающая среда, результат не может оказаться ниже значения критерия максимина! Это свойство делает принцип максимина наиболее применяемым на практике, особенно в случаях, где от конечного результата зависят жизни людей.

Народная интуиция уже веками непроизвольно использует принцип максимина. Это подтверждается такими поговорками как "Семь раз отмерь – один раз отрежь", "Береженого бог бережет", "Лучше синица в руках, чем журавль в небе".

В нашем случае наибольший элемент в добавленном столбце 4 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения средств третий проект.

Ответ А3 .

3.2 Критерий азартного игрока

Критерий азартного игрока (принцип максимакса) – это диаметральная противоположность принципу максимина, он тоже применяется при принятии решения в условиях неопределенности. Критерий азартного игрока допустим в случаях очень низкого риска, а также когда выигрыш намного превышает возможные потери.

Показатель эффективности стратегии Аi по критерию азартного игрока находится по формуле:

Для случая оптимизации потерь критерий будет таким:

Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения максимальных элементов каждой строки.

Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наибольший элемент в добавленном столбце 15 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А1, т.е. инвестор должен выбрать для вложения первый проект.

Применение критерия азартного игрока народная мудрость выразила пословицей "Кто не рискует, тот не пьет шампанского".

Ответ А1 .

3.3 Критерий произведений

Критерий произведений тоже применяется при принятии решения в условиях неопределенности. Это более нейтральный критерий по сравнению с принципом максимина и критерием азартного игрока. Критерий произведений производит некое "выравнивание" между большими и малыми значениями аij .

Показатель эффективности стратегии Аi по критерию произведений находится по формуле:

Для случая оптимизации потерь критерий будет таким:

Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения произведений всех элементов каждой строки.

Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наибольший элемент в добавленном столбце 8640 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения третий проект.

Ответ А3 .

3.5 Критерий Сэвиджа

Решение опять принимается в условиях неопределенности.

Сэвидж предложил ввести в рассмотрение новую матрицу, элементы которой определяются по формуле:

Построим новую матрицу для нашего примера:

Пример вычислений для первого столбца:

6; r11 = 6 – 3 = 3; r21 = 6 – 4 = 2; r31 = 6 – 6 = 0; r41 = 6 – 3 = 3.

Построенная таким способом матрица называется "матрицей сожалений". И действительно, ведь каждый элемент rijвыражает "сожаление" ЛПР по поводу того, что он не выбрал наилучшего решения по отношению к

Z = =

Для случая оптимизации потерь критерий будет таким:

Z = #

Таким образом, матрицу сожалений необходимо дополнить справа еще одним столбцом, в который нужно внести наибольшие значения элементов каждой строки.

Затем из элементов добавленного столбца нужно выбрать наименьший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наименьший элемент в добавленном столбце 5 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения третий проект.

Ответ А3 .

3.6 Критерий Гурвица

Решение принимается в условиях неопределенности.

Гурвиц предложил критерий, показатель эффективности стратегии Аi при котором находится где-то между точками зрения крайнего оптимизма (критерий азартного игрока) и крайнего пессимизма (критерий максимина). Для этого вводят некий коэффициент l – уровень пессимизма. Выбор уровня пессимизма – процесс субъективный. Чаще всего его выбирают равным либо 0,6 либо 0,5. После этого показатель эффективности стратегии Аi по критерию Гурвица находится по формуле:

Z =

Для случая оптимизации потерь критерий будет таким:

Z = #

Таким образом, исходную матрицу необходимо дополнить справа еще тремя столбцами. В первый нужно внести значения наименьших элементов всех строк, умноженных на уровень пессимизма l = 0,6. Во второй нужно внести значения наибольших элементов всех строк, умноженных на уровень оптимизма 1 – l = 1 – 0,6 = 0,4 . В третий добавленный столбец внесем сумму значений первых двух добавленных столбцов:

Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наибольший элемент в добавленном столбце 7,2 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А1, т.е. инвестор должен выбрать для вложения средств первый проект.

Ответ А1 .

Раздел 4. Принятие решения в условиях противодействия

4.1 Матричные игры

Раздел "Теории принятия решений" в условиях противодействия называется теорией игр . А так как в основном условия задач в "Теории принятия решений" задаются в виде матриц, то рассматриваемые конфликтные ситуации называются матричными играми . В матричных играх состояниями В1, В2, …, Вnуправляет не беспристрастная природа, а активный противник, преследующий сугубо свои цели.

ЛПР, управляющий своими стратегиями (ходами ) А1, А2, …, Аn, и его противник, управляющий стратегиями (ходами) В1, В2, …, Вnв данной ситуации называются игроками .

Элементы матрицы аij , заданной в условии, называются выигрышами (платежами) игрока А. А вся матрица называется матрицей платежей .

Далее возможны два случая. Если в матричной игре задана одна платежная матрица, то естественно предположить, что выигрыши первого игрока будут являться проигрышами второго игрока. Такая антагонистическая ситуация называется матричной игрой с нулевой суммой . Цель игры для первого игрока (ЛПР) – побольше выиграть, а для второго игрока – поменьше проиграть. Иными словами, цельюигры является определение оптимальной стратегии для каждого игрока – такой стратегии, при которой выигрыш первого игрока будет максимальным, а проигрыш второго игрока будет минимальным.

Однако, такая ситуация бывает не всегда. Зачастую в жизни ваш противник преследует сугубо свои цели, определенные своими выигрышами. В этом случае матричная игра задается двумя платежными матрицами. Или для краткости элементы одной платежной матрицы состоят из двух чисел: (аij, bij). Такая ситуация называется матричной игрой с ненулевой суммой . И для первого и для второго игроков цель игры – побольше выиграть.

Очевидно, что рассмотренная матричная игра предполагает, что каждый игрок делает только по одному ходу. Естественно, что многие конфликтные ситуации предполагают по нескольку ходов каждого игрока. Такие игры рассматриваются пошагово и решаются методами динамического программирования. На каждом отдельном шаге такая игра рассматривается как игра с одним ходом.

Матричные игры для двух игроков с нулевой и ненулевой суммой достаточно хорошо изучены и для них разработана теория оптимального поведения игроков.

Однако в жизненной практике в конфликтных ситуациях зачастую участвуют более чем две стороны. Чем больше игроков – тем больше проблем. Такие игры менее изучены и здесь есть просторное поле для новых фундаментальных научных исследований.

Несмотря на несколько легкомысленное звучание основных терминов, теория игр является строго научной дисциплиной с точными математическими выкладками.

На протяжении всего своего исторического пути развития человечество ежедневно сталкивается с конфликтными ситуациями: политическими, военными, экономическими, социальными и прочими, которые проявляются как в глобальных, так и в малых (вплоть до личных) формах. И если бы Человеку хватило бы ума в конфликтных ситуациях пользоваться не силой, не надеждой на "авось", а математикой, то жизнь наверняка была бы другой. Будем надеяться, что новое поколение, усвоив курс "Исследование операций" -, изменит жизнь к лучшему!

Итак, рассмотрим игру, в которой ЛПР противостоит "думающий" противник.

Возможны такие случаи:

1) Ходы игроками делаются одновременно.

2) Первым ходит игрок 2 – противник, но игрок 1 – ЛПР, не имеет информации о ходе противника.

3) Первым ходит игрок 2 – противник, но игрок 1 – ЛПР, знает о ходе противника.

4) Первым ходит игрок 1, но игрок 2 не имеет информации о ходе противника.

5) Первым ходит игрок 1, но игрок 2 знает о ходе противника.

Очевидно, что случаи 1), 2) и 4) идентичны – никто из игроков не знает о ходе противника ничего.

Рассмотрим случай 3). Так как ЛПР имеет полную информацию о ходе противника, то мы имеем ситуацию принятия решения в условиях полной определенности. Как уже отмечалось выше, такими задачами занимается математическое программирование.

Рассмотрим случай 5). Так как ЛПР ходит первым, то его противник наверняка выберет самую худшую для ЛПР стратегию. Поэтому в такой ситуации ЛПР необходимо принимать решение о своем ходе согласно принципу наибольшей осторожности, т.е. согласно принципу максимина. Это утверждение однозначно, легко математически доказывается и не должно подвергаться сомнению ни в каких жизненных ситуациях.

4.2 Матричные игры, разрешимые в чистых стратегиях

Рассмотрим парную конечную антагонистическую игру. Пусть игрок А располагает mличными стратегиями, которые обозначим А1, а2 ..., Аm. Пусть у игрока В имеется nличных стратегий, обозначим их В1, В2,.., Вn. Говорят, что игра имеет размерность mх n . В результате выбора игроками любой пары стратегий Аiи Вj(i = 1,2 …, m; j = 1,2, …, n).

Однозначно определяется исход игры, т.е. выигрыш аijигрока А (положительный или отрицательный) и проигрыш (-аij) игрока В. Предположим, что значения аijизвестны для любой пары стратегий (Аi Вj). Значения этих выигрышей заданы в платежной матрице

Строки этой таблицы соответствуют стратегиям игрока А, а столбцы – стратегиям игрока В.

С помощью хорошо нам знакомого принципа максимина найдем гарантированный наибольший выигрыш для игрока А:

Найденное число a называется нижней ценой игры.

Стратегия, соответствующая максимину, называется максиминной стратегией – она будет оптимальной стратегией игрока А.

Посмотрим на эту ситуацию с точки зрения второго игрока: ему необходимо уменьшить свои потери. В таком случае критерию максимина превратится в минимаксный и гарантированный наименьший проигрыш для игрока В будет таким:

Найденное число в называется верхней ценой игры

Стратегия, соответствующая минимаксу, называется минимаксной стратегией – она будет оптимальной стратегией игрока В.

Причем, для нижней и верхней цены игры всегда справедливо неравенство:

Если нижняя и верхняя цены игры совпадают, то общее значение верхней и нижней цены игры a = в = n называется чистой ценой игры , или ценой игры . Элемент платежной матрицы, в котором достигается чистая цена игры, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз – в другом). Найденные оптимальные стратегии игроков А и В в данном случае называются чистыми стратегиями .

Матричная игра с платежной матрицей, имеющей седловую точку, называется игрой, разрешимой в чистых стратегиях. При этом очевидно, что решение игры обладает устойчивостью, т.е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии. Оба игрока находятся в "положении равновесия", из которого не выгодно выходить каждому.

Рассмотрим числовой пример.

Дополним исходную матрицу справа еще одним столбцом, а снизу – еще одной строкой. В них будем заносить значения минимальных элементов каждой строки и значения максимальных элементов каждого столбца соответственно:

Найдем нижнюю цену игры. Выигрыш игрока А:

a = = 4он достигается в третьей строке.

Найдем верхнюю цену игры. Выигрыш игрока В:

в = = 4 он достигается во втором столбце.

Как видим, выигрыши игроков совпадают: a = в = n = 4 , значит у матрицы имеется седловая точка. А значит, у данной матричной игры имеется пара оптимальных чистых стратегий А3В2 . Цена игры n = 4.

Но такое бывает далеко не всегда.

4.2 Матричные игры, разрешимые в смешанных стратегиях

4.2.1 Постановка задачи

Если платежная матрица не имеет седловой точки, то . А значит . Такая игра в чистых стратегиях не разрешима. Первый игрок в таком случае будет стремиться увеличить свой выигрыш, а второй – уменьшить свой проигрыш. Поиск такого решения приводит к применению сложной стратегии, состоящей в случайном применении двух и более чистых стратегий с определенными вероятностями:

PA = (p1, p2, …, pm) где pi – это вероятности применения чистых стратегий игроком А;

QB = (q1, q2, …, qn) где qj– это вероятности применения чистых стратегий игроком B;

при этом и .

Такие наборы вероятностей применения чистых стратегий игроками А и В называются смешанными стратегиями .

Заметим, что чистые стратегии – это частный случай смешанных стратегий. Например, чистая стратегия первого игрока – это смешанная стратегия, у которой все вероятности pi = 0 , кроме соответствующего номера kчистой стратегии: pk = 1 .

Основная теорема теории игр (Теорема фон-Неймана) : любая конечная игра двух лиц с нулевой суммой разрешима в смешанных стратегиях.

Как же искать смешанные стратегии? Их можно найти точно – алгебраическим способом (в частности, с помощью симплекс-метода) или графическим способом (для игры размерности 2 х nили m х 2).

Для того чтобы точно найти решение матричной игры в смешанных стратегиях, нужно представить заданную матричную игру в виде задачи линейного программирования и решить её симплекс-методом.

Рассмотрим матричную игру, не разрешимую в чистых стратегиях, в общем виде:

Заметим, что в матричной игре, разрешимой в чистых стратегиях, элементы платежной матрицы могут быть как положительными, так и отрицательными. Для симплекс-метода, которым будем решать игру, не разрешимую в чистых стратегиях, необходимо, чтобы элементы платежной матрицы были неотрицательными. Для этого, если в платежной матрице будут отрицательные элементы, нужно ко всем элементам платежной матрицы прибавить достаточно большое число с. При этом решение задачи не изменится, а цена игры увеличится на с.#

PA = (p1, p2, …, pm)– это оптимальная смешанная стратегия первого игрока. Её применение гарантирует первому игроку выигрыш не меньший, чем цена игры n . Если при этом второй игрок выберет стратегию В1, математически все вышесказанное будет иметь вид:

а11р1 + а21р2 + … + am1pm ≥ n

Таких неравенств будет столько, сколько есть возможных альтернатив у второго игрока, т.е. столбцов платежной матрицы – nштук:

а11р1 + а21р2 + … + am1pm ≥ n

а12р1 + а22р2 + … + am2pm ≥ n

а1nр1 + а2nр2 + … + amnpm ≥ n


Разделив все неравенства на n , получим (в общем виде):

а1j + а2j + … + amj ≥ 1

Обозначим: = xi, . С помощью таких новых переменных вышеуказанные неравенства запишутся в виде:

а11 x1 + а21 x2 + … + am1 xm ≥ 1

а12 x1 + а22 x2 + … + am2 xm ≥ 1

а1n x1 + а2n x2 + … + amn xm ≥ 1

Просуммируем новые переменные:

X1 + x2 + … + xm = + + … + = =

PA = (p1, p2, …, pm)– это оптимальная смешанная стратегия первого игрока. То есть нужно так подобрать (p1, p2, …, pm) , чтобы n была как можно большей. Или же, что то же самое, чтобы была как можно меньшей.

Таким образом, используя новые переменные и учитывая всё вышесказанное, исходную матричную игру можно представить в виде задачи линейного программирования:

найти вектор переменных Х = {x1, x2, … , xm}, такой что:

целевая функция f = min

при множестве ограничений:


гдеА – матрица коэффициентов (платежная матрица), заданная в условии;

Е – единичный вектор

Х – вектор неизвестных переменных, такой что xi = ;

n – это цена игры:n = = ;

рi – это коэффициенты вектора смешанной стратегии первого игрока.

4.2.2 Решение задачи симплекс-методом

Рассмотрим числовой пример.

Пусть имеем игру с платежной матрицей:

Проверим, имеет ли наша матричная игра седловую точку? Для этого используем принцип максимина.

Выигрыш игрока А:a = = 2 он достигается в первой строке.

Выигрыш игрока В:в = = 3 он достигается в четвертом столбце.

Как видим, выигрыши игроков не совпадают, значит у матрицы нет седловой точки. Значит, нужноискать смешанные стратегии.

В данном конкретном случае в множестве ограничений будет четыре неравенства (т.к. в условии задачи четыре столбца). Пересчитывать симплекс- таблицы с четырьмя строками не очень сильно хочется, поэтому удобнее решить двойственную задачу (для коэффициентов вектора смешанной стратегии второго игрока), в которой будет всего две строки (т.к. в условии задачи две строки):

найти вектор двойственных переменных Y = {y1, y2, … yn}, такой что:

целевая функция g = max

при множестве ограничений:АY ≤ Е

Для нашего примера задача линейного программирования будет такой:

найти вектор Y = {y1, y2, y3, y4}, такой что:

целевая функция g = max

при множестве ограничений:

Однако, как показывает многолетняя практика, студенты обладают так называемой "краткосрочной памятью", которая работает только до сдачи необходимого экзамена. Поэтому вспомнить сейчас методику применения симплекс-метода вряд ли кто-то сможет. Для этого нужно сходить в библиотеку, найти специальную литературу и умело ей воспользоваться. Осмелимся заметить, что и этого половина студентов сделать поленится и благополучно завалит данную тему - . #

Поэтому для всеобщего блага приведем здесь методику применения симплекс-метода (пройденного и успешно сданного в математическом программировании) для нашей конкретной задачи.

1 этап – приведение задачи линейного программирования к каноническому виду.

Неравенства во множестве ограничений нужно превратить в равенства с помощью добавления искусственных переменных. Для того чтобы неравенства превратить в равенства, надо в каждое неравенство добавить (или отнять – в зависимости от знака неравенства) искусственную переменную:

Целевая функция при этом будет выглядеть так:g = y1 + y2 + y3 + y4 + 0y5 + 0y6

2 этап – определение начального опорного плана.

В полученном случае начальный опорный план будут составлять искусственные переменные, входящие в ограничения с коэффициентами +1:{ y5 ; y6 }. Новых искусственных переменных для данной задачи вводить не требуется.

3 этап – заполнение исходной симплекс-таблицы.

Исходная симплекс-таблица для нашей двойственной задачи будет иметь вид:

В столбец "текущий базис" ставим переменные, начального опорного плана: { y5 ; y6 }.

В столбец "сi" ставим их коэффициенты в целевой функции.

В столбец "А0" ставим вектор ограничений Е: а10 = 1 ;а20 = 1 .

В самую верхнюю строку таблицы ставим коэффициенты cjпри соответствующих переменных в целевой функции:c1 = 1 ; c2 = 1 ; c3 = 1 ; c4 = 1 ; c5 = 0 ; c6 = 0 .

В столбцы "А1", ...., "А6" ставим соответствующие коэффициенты матрицы ограничений А.


Вычисляем оценки по формулам

D0 = ; .Dj = cj

и ставим их в самую нижнюю строку симплекс-таблицы (строку оценок) :

D0 = = 0 * 1 + 0 * 1 = 0D1 = c1 = 0 * 4 + 0 * 3  1 =  1

D2 = c2 = 0 * 3 + 0 * 7  1 =  1D3 = c3 = 0 * 8 + 0 * 1  1 =  1

D4 = c4 = 0 * 2 + 0 * 3  1 =  1D5 = c5 = 0 * 1 + 0 * 0  0 = 0

D6 = c6 = 0 * 0 + 0 * 1  0 = 0

4 этап – пересчет симплекс-таблицы.

1. Если j ³ 0 для всех j = 1, 2, .... , n , то данный план (в столбце "текущий базис") – оптимален. В нашем случае это условие не выполняется, значит, текущий базис можно улучшить.

2. Если имеются k < 0 и в столбце Аk все элементы aik 0 , то целевая функция не ограничена сверху на допустимом множестве и данная задача не имеет смысла. В нашем случае видим, что целевая функция сверху ограничена.

3. Если имеются j < 0 и в столбцах Аj , соответствующих этим оценкам, существует хотя бы один элемент aik > 0, то возможен переход к новому лучшему плану, связанному с большим значением целевой функции. У нас так и есть.

4. Переменная хk, которую необходимо ввести в базис, для улучшения плана соответствует наименьшей отрицательной оценке j. Столбец Ak, содержащий эту оценку называется ведущим . В нашем случае все оценки одинаковы. Поэтому в качестве ведущего столбца выберем любую оценку, например, третью: k = 3.

5. Ищем min{ ai0 / ai1 } = min{ 1/8 ; 1/1 } = 1/8– этот минимум достигается при i = 1. Значит, r = 1первая строка – ведущая . (на рисунке помечена стрелкой)

Ведущий элементark = a13 = 8 (на рисунке выделен)

6. Заполняем новую симплекс-таблицу.

В столбец "текущий базис" вместо переменной у5 ставим переменную у3 .

В столбец "сi" ставим коэффициент переменной у3 в целевой функции.

Самая верхняя строка таблицы всегда остаётся неизменной.

Пересчитываем ведущую строку по формуле :

После этого пересчитываем остальные строки по формуле

:

вторая строка (i = 2)

D0 = = 1 * + 0 * = D1 = c1 = 1 * + 0 *  1 = 

D2 = c2 = 1 * + 0 *  1 = D3 = c3 = 1 * 1 + 0 * 0  1 = 0

D4 = c4 = 1 * + 0 *  1 = 

D5 = c5 = 1 * + 0 *  0 = D6 = c6 = 1 * 0 + 0 * 1  0 = 0

После этого повторяем 4 этап до тех пор, пока не будет выполнен п.1 (все j ³ 0).

В нашем случае имеются j < 0 и наименьшая среди них 4 . Значит ведущим столбцом на данном шаге будет A4 (пометим его стрелкой).

Ищем min{ ai0 / ai4 } = min{:; :} = min{; } = – этот минимум достигается при i = 2. Значит, r = 2вторая строка – ведущая (на рисунке помечена стрелкой).

Таким образом, в новый текущий базис вместо переменной у6 надо ввести переменную у4 .

Пересчитываем все элементы новой симплекс-таблицы.

Пересчитываем ведущую строку (вторую):

= : =  = = : =  =

= : =  = = 0: = 0

= : = 1 = – : = – = 1: =

Приведенные выше и ниже вычисления представлены в весьма подробном виде. Это сделано из тех соображений, что как опять таки показывает практика, даже не смотря на достаточно хорошее понимание и усвоение теоретического материала, ошибки зачастую возникают именно при выполнении элементарных арифметических операций. Не следует думать, что средняя школа осталась позади, и вы всё можете посчитать в уме. Поэтому всем студентам мы советуем не лениться и подробно расписывать все арифметические действия (особенно с дробями).#

Пересчитываем оставшуюся строку (первую):

= –  = – = =

= –  = – = =

= –  = – = – = –

= 1 – 0  = 1 = – = 0

= –  = + = =

= 0 –  = –

Пересчитываем и заполняем строку оценок:

D0 = = 1 * + 1 * = =

D1 = c1 = 1 * + 1 *  1 =  =

D2 = c2 = 1 * + 1 *  1 =  = =

D3 = c3 = 1 * 1 + 1 * 0  1 = 0

D4 = c4 = 1 * 0 + 1 * 1  1 = 0

D5 = c5 = 1 * + 1 *  0 = =

D6 = – c6 = 1  + 1  – 0 =

Повторяем 4-й этап. При проверке п. 1 видим, что все j ³ 0 . Следовательно, данный план {у3, у4} (в столбце "текущий базис") – оптимален. Больше пересчитывать симплекс-таблицу не нужно.

Решение задачи линейного программирования полностью содержится в последней симплекс-таблице.

Значения переменных находятся в столбце А0 возле соответствующих переменных. В нашем случае, мы видим, что у3 = , у4 = . Переменные у1 и у2 не входят в базис, поэтому их значения будут равны нулю. Таким образом, вектор переменных будет выглядеть так: Y = .

Значение целевой функции – это значение оценки 0 . В нашем случае g = 0 = .

Значения двойственных переменных находятся в строке оценок возле искусственных переменных. В нашем случае это 5 и 6 , то есть х1 = , х2 = . Таким образом, вектор двойственных переменных будет выглядеть так:Х = .

Итак, мы получили решение прямой задачи (которая у нас была двойственной): Y =

и двойственной задачи к данной (которая у нас была прямой):

Значения целевых функций при этом будут совпадать:f = g = .

для первого игрока по формуле рi = :

Р = = ,

для второго игрока по формуле qi = :

Q = = .

Особо "продвинутые" студенты при нахождении решения задачи линейного программирования, чтобы не считать симплекс-метод вручную академическим способом, могут воспользоваться средствами MS Excel. Это гораздо быстрее и удобнее.#

Ответ:

цена игры n = .

4.2.3 Решение задачи графическим методом

Симплекс-методом можно найти решение матричной игры произвольной размерности. Графическим же способом найти решение можно лишь для игры размерности 2 х n.

В ответе мы должны получить смешанные стратегии – два вектора PA = (p1, p2) и QB = (q1, q2, …, qn). Причем, p2 = 1 – p1.

В этом случае выигрыш игрока А, соответствующий j-той чистой стратегии игрока В, будет вычисляться по формуле:

aj* = a1j p1 + a2j p2 = a1j p1 + a2j (1 – p1) = (a1j – a2j) p1 + a2j

Нахождение наименьшего гарантированного выигрыша для игрока А подразумевает минимизацию данного выражения.

По условию наша игра имеет размерность 2 х n. То есть j = . В итоге будем иметь n аналогичных выражений, которые надо минимизировать. После этого согласно принципу максимина из найденных минимумов нужно выбрать наибольший:

a =

Решим графическим способом предыдущий числовой пример.


В данном случае будем иметь четыре уравнения, соответствующие четырем возможным чистым стратегиям игрока В:a1* = р1 + 3

a2* = –4р1 + 7

a4* = –р1 + 3

Чтобы определить наилучший результат из наихудших, построим нижнюю огибающую четырех заданных прямых (на рисунке выделена жирной линией). Эта огибающая представляет минимальный гарантированный выигрыш игрока А, независимо от того, что делает игрок В. Точка максимума нижней огибающей – это и есть решение задачи по принципу максимина. Координатами этой точки будут р1 – одна из вероятностей смешанной стратегии игрока А и a – выигрыш игрока А.

# Заметим, что содержательной является только часть графика, заключенная в интервале 0 ≤ р1 ≤ 1 . Все линии и точки, лежащие за пределами этого интервала не принимаются во внимание. #

"На глаз" координаты точки максимума нижней огибающей видны плохо. Точка максимума нижней огибающей – это точка пересечения прямой 3 и прямой 4. Найдем её точные координаты, решив систему соответствующих уравнений:

ÞÞÞ


Итак, для игрока А все ясно:

смешанная стратегия игрока А: Р = ,

выигрыш игрока А:a = .

Аналогичные рассуждения нужно повторить и для игрока В.

Точка максимума нижней огибающей – это точка пересечения прямой 3 и прямой 4. Значит оптимальная смешанная стратегия игрока В определяется двумя стратегиями В3 и В4 соответственно.

Проигрыш игрока В, соответствующий i-той чистой стратегии игрока A, будет вычисляться по формуле:

вi* = ai3 q3 + ai4 q4 = ai3 q3 + ai4 (1 – q3) = (ai3 – ai4) q3 + ai4

В данном случае будем иметь два уравнения, соответствующие двум возможным чистым стратегиям игрока А:

в2* = –2q3 + 3

Решив систему этих двух уравнений, найдем q3 – одну из вероятностей смешанной стратегии игрока В и в – выигрыш игрока В:

ÞÞÞ

Все выяснили также и для игрока В:

смешанная стратегия игрока В: Q =

проигрыш игрока В:в =

Выигрыш игрока А и проигрыш игрока В совпадают – это и будет ценой игры.

Ответ: смешанная стратегия для первого игрока Р = ,

смешанная стратегия для второго игрока Q = ,

цена игры n = .

Видим, что ответы в случае решения задачи симплекс-методом и в случае решения этой же задачи графическим методом совпали.

Мораль вышесказанного такова, что если имеем задачу размерности 2 х nи под рукой нет компьютера, то точное решение можно получить с помощью графического метода.

Если имеем задачу размерности m х 2 , то делаем то же самое, поменяв игроков местами и транспонировав платежную матрицу. #

Если же под рукой есть компьютер, то такие задачи удобнее решать симплекс-методом средствами MS Excel. Если же поставленная задача любой большей размерности, то решить ее можно только симплекс-методом либо вручную, либо опять таки средствами MS Excel.

Раздел 5. Принятие решения в условиях нескольких критериев выбора

5.1 Постановка задачи, основные понятия

Все перечисленные классические критерии выбора не охватывают всевозможные практические ситуации. К каждой конкретной практической ситуации ЛПР может выработать свой "новый" критерий, который будет более точно количественно и качественно описывать данную ситуацию.

К сожалению или счастью, жизнь устроена несколько сложнее и достаточно часто бывает невозможно описать ситуацию одним критерием. Даже в обыденной жизни мы практически никогда не используем единственный критерий, например, при выборе подарка ко дню рождения, или при выборе блюд из меню в кафе, или при выборе места, куда поехать в отпуск.

А представьте, что вы – проектировщик баз данных. В таком случае при выборе оптимального проекта баз данных вам следует учитывать тоже несколько критериев: объем занимаемой оперативной памяти, средняя скорость одной операции, размер программного кода, аппаратные требования, обучаемость обслуживающего персонала, возможность и стоимость сопровождения и прочие. Ниже будут рассматриваться прикладные задачи с уже изученными нами критериями: Байеса, Лапласа и др. Но если вы все-таки – например, проектировщик баз данных, то вам надо будет вместо них рассматривать "свои" критерии, которые являются спецификой вашего рода деятельности.

Такие ситуации описываются многокритериальными задачами принятия решений.

Теоретически можно представить себе случай, когда в допустимом множестве альтернатив существует одна альтернатива, которая лучше всех по всем критериям сразу. Очевидно, что она и будет лучшей.

Однако на практике такое бывает не всегда. Для решения таких задач разработаны специальные методы. Надо сказать, что данное научное направление сравнительно ново – оно развивается последние 30 – 40 лет. Уже известные методы корректируются, обобщаются, разрабатываются новые. Приятно отметить, что одним из основоположников и всемирно признанным гуру данного научного направления является наш почти соотечественник В.В. Подиновский.

Рассмотрим приведенный выше числовой пример. И применим к нему все изученные нами критерии. Результаты отобразим в таблице:

Заметим, что стратегия (альтернатива) А4 по всем девяти критериям хуже, чем любая другая стратегия. Её можно убрать из рассмотрения, при этом результат выбора не изменится. Это утверждает принцип Парето . Оставшиеся альтернативы А1, А2, А3, будут образовывать множество Парето для данной задачи.

Из допустимого множества альтернатив множество Парето образуют те альтернативы, каждая из которых не хуже по всем критериям, чем любая альтернатива, не вошедшая во множество Парето, а хотя бы по одному критерию – лучше.

Согласно принципу Парето оптимальная альтернатива содержится во множестве Парето. Если, например исходная задача содержит 100 альтернативных решений, а множество Парето состоит из 20 альтернатив, то применение принципа Парето в 5 раз уменьшает размерность задачи, соответственно в 5 раз увеличится скорость работы программы, реализующей решение такой задачи!

Далее полученную многокритериальную задачу принятия решения на множестве Парето можно свести к однокритериальной, введя некий обобщенный критерий Z* как функцию от предыдущих частных критериев. Обобщенный критерий Z* в литературе еще называют функцией полезности . Процесс сведения многокритериальной задачи к однокритериальной называется свёрткой .

5.2 Линейные свёртки

Начнем с линейных свёрток. Все линейные свёртки основываются на принципе: "низкая оценка по одному критерию может быть компенсирована высокой оценкой по другому".

Рассмотрим простую линейную аддитивную свёртку:

То есть, данная свёртка подсчитывает, сколько раз та или иная стратегия была оптимальной. Результаты отобразим в таблице:

В последнем столбе таблицы размещены результаты свёртки. Как видим, оптимальной стратегией является А3.

Такая свёртка является самой простой из линейных, она не учитывает количественных показателей значений критериев.

Рассмотрим линейную аддитивную свёртку с нормирующими множителями:

Как видим, оптимальной стратегией также является А3. Но в этом случае уже нет такого количественного отрыва как в предыдущей простой линейной свёртке. Да и стратегия А2 уже не кажется очень сильно плохой. Если бы были чуть другие начальные данные, то ответы двух рассмотренных вариантов свёрток могли бы и не совпасть.

Линейная аддитивная свёртка с нормирующими множителями позволяет работать с количественными критериями, имеющими, как в нашем случае, разные единицы измерений.

Рассмотрим линейную аддитивную свёртку с весовыми коэффициентами:

вj – весовые коэффициенты, отражающие относительный
вклад частных критериев в общий критерий.

Весовые коэффициенты принято указывать уже нормированными величинами (Sвj = 1).

Очевидно, что в каждой отдельной конкретной ситуации частные критерии по-разному влияют на общий суперкритерий. Поэтому естественно им придать в общей формуле разный удельный вес. Это можно сделать с помощью весовых коэффициентов. Но где же их взять? Обычно ЛПР сам назначает каждому критерию весовые коэффициенты на свой "мудрый" взгляд. На этом этапе строгая математическая наука заканчивается – конечный результат лежит целиком на совести ЛПР и зависит от его опыта и интуиции в данной сфере. Однако от такого субъективизма никуда не денешься – нельзя же всю жизнь формализовать с помощью математических формул!

Как видим, при неизменном условии задачи оптимальной получилась стратегия А2, хотя в двух предыдущих свёртках она "пасла задних". Все дело в весовых коэффициентах!

5.3 Максиминная и лексикографическая свёртки

Максиминная свёртка – это самый простой способ построения обобщенного критерия (суперкритерия), основанный на применении уже хорошо нам известного принципа максимина.

Пусть мы имеем оценки некоторых объектов (альтернатив) по nкритериям. Каждый из критериев имеет свою размерность, и эти размерности обычно не совпадают. Поэтому для начала нужно нормировать все имеющиеся оценки. Делается это с помощью нормирующих множителей – на основе исходной матрицы оценок строится новая матрица с такими элементами:

где aj = – нормирующие множители.

Исходную матрицу мы, так же как и ранее, дополнили справа еще одним столбцом, в который внесли значения минимальных элементов каждой пересчитанной строки.

Из элементов добавленного столбца выбираем наибольший. Строка, в которой он стоит и будет оптимальной альтернативой. В данном случае оптимальной будет альтернатива А1.

Недостаток максиминной свёртки – это то, что она учитывает только те критерии, которые дают самые плохие оценки, все остальные критерии игнорируются. Из-за этого максиминную свёртку используют не слишком часто, чаще используют линейные и мультипликативные свёртки. Зато такой подход всегда дает гарантированный результат , ниже которого исхода не будет.

А что делать, если максиминная свёртка даст несколько одинаковых результатов (такое тоже бывает!), а ЛПР необходимо выбрать одно решение? Для такого интересного случая А. Джоффрион предложил использовать так называемую лексикографическую свёртку . Делается это так. Берутся две (или несколько) оптимальные альтернативы, полученные методом максиминной свёртки, и из них выбирается наилучшая методом линейной свёртки.

Как видим, с такими числовыми данными максиминная свёртка оптимальными считает альтернативы А1 и А2 . Теперь после максиминной свёртки применим к альтернативам А1 и А2 линейную свёртку:

В результате получили однозначный ответ: оптимальной является альтернатива А1 .

5.4 Мультипликативные свёртки

Рассмотрим мультипликативную свёртку с нормирующими множителями:

где aj – нормирующие множители.

Мультипликативная свёртка основывается на постулате: "низкая оценка хотя бы по одному критерию влечет за собой низкое значение функции полезности". Действительно, если вы выбираете торт, и он – несвежий, то это обстоятельство никак не может быть компенсировано его красотой или ценой.

Посмотрим, какие результаты даст мультипликативная свёртка с весовыми коэффициентами:

где aj – нормирующие множители,

вj – весовые коэффициенты.

Итоги отражены в таблице:

Оптимальной стратегией снова является А3.

В конце еще раз напомним непременное правило: перед тем, как применять какую-либо свёртку нужно автоматически всегда выделять множество Парето. И именно для множества Парето применять свёртки. Иначе вы или ваша программа будете выполнять лишнюю ненужную работу.

5.5 Многокритериальный выбор на языке бинарных отношений

До этого были рассмотрены случаи, когда все критерии оценивали все альтернативы. Все альтернативы можно было сравнить друг с другом по каждому критерию. А что делать, если не все альтернативы будут оценены всеми критериями? В таком случае появятся альтернативы, не сравнимые между собой по некоторым критериям. Рассмотрим такой случай на нашем примере (уберем из него некоторые оценки):

При таком условии альтернативы можно сравнить между собой лишь попарно. Такие попарные сравнения называются бинарными отношениями . Обозначается бинарное отношение (на примере критерия Байеса из нашей таблицы) А1RА2 – альтернатива А1 лучше альтернативы А2.

Дадим математически точное определение бинарных отношений.

Бинарным отношением на множестве Ω называется произвольное подмножество R множества Ω Х Ω , где Ω Х Ω – это множество всех упорядоченных пар (ai ;aj) , где ai , aj Î Ω . #

Бинарные отношения очень удобно изображать наглядно. Представим четыре стратегии из нашего примера в виде точек на плоскости. Если имеем, что какая-то альтернатива лучше другой, то проведем стрелку от лучшей альтернативы к худшей. На примере критерия Байеса из нашей таблицы имеем А1RА2 , поэтому на плоскости проведем стрелку от точки А1 к точке А2. Аналогичным образом поступим со всеми начальными данными из таблицы. Заметим, что бинарные отношения не исключают отношения элемента с самим собой. На рисунке такое бинарное отношение будет задаваться петлёй со стрелкой. В результате получим следующую картину:

Подобные фигуры называются ориентированными графами . Точки – это вершины графа, стрелки между точками – это дуги графа.

Дадим математически точное определение графа.

Графом называется пара (Е, е), где Е – непустое конечное множество элементов (вершин), е – конечное (возможно и пустое) множество пар элементов из Е (множество дуг). #

Две вершины, соединенные дугой, называются смежными вершинами. Дуга, соединяющая две вершины, называется инцидентной этим вершинам. Две вершины, соединенные дугой, называются инцидентными этой дуге.

Как же произвести выбор наилучшего элемента из имеющихся альтернатив (наилучшей вершины графа)? Для этого сначала необходимо определить, что же будет являться наилучшей вершины (наилучшими вершинами) графа. На этот счет имеются две исторически сложившиеся в теории графов точки зрения.

1)Максимальным элементом множества Ω по бинарному отношению R называется такой элемент х Î Ω , что "у Î Ω выполняется отношение хRy .

Иначе говоря, максимальный элемент множества должен быть "лучше" каждого элемента этого множества. Не исключается и то, что он может быть "лучше" самого себя, кроме этого максимальный элемент может быть одновременно и "хуже" какого-либо элемента этого множества. Слова "лучше" и "хуже" не совсем верно передают смысл бинарных отношений.

Для графов понятие максимальный элемент – это вершина, из которой исходят стрелки во все остальные вершины графа. Например, на рис. 1 максимальным элементом будет вершина А1 – из неё выходят стрелки во все остальные вершины графа.

2)Оптимальным по Парето элементом множества Ω по бинарному отношению R называется такой элемент х Î Ω , что ù$у Î Ω для которого выполнялось бы отношение уRх.

Иначе говоря, оптимальный по Парето элемент множества – это такой элемент, "лучше" которого в рассматриваемом множестве нет.

Для графов понятие оптимальный по Парето элемент – это вершина, в которую не входит ни одна стрелка. Например, на рис. 1 оптимальным по Парето элементом будет вершина А1 – в неё не входит ни одна стрелка.

Видим, что два разных подхода к определению наилучшего элемента в нашем примере дали одинаковый результат. Но такое бывает не всегда.

Рассмотрим несколько примеров.

У графа на рис. 2 максимальным элементом будет вершина А1 – из неё выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 3 максимальным элементом будет также вершина А1 – из неё выходят стрелки во все остальные вершины графа. Заметим: то, что в неё входит стрелка из вершины А4 , по определению совершенно не важно. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 4 максимальными элементами будут вершины А1 и А4 – из них выходят стрелки во все остальные вершины графа. Оптимальных по Парето элементов у данного графа нет.

У графа на рис. 5 максимального элемента нет. Оптимальными по Парето элементами будут вершины А1 и А4 – в них не входит ни одна стрелка.

Отметим очевидные особенности.

У графа либо нет максимальных элементов, либо есть.

Оптимальными по Парето элементами могут быть несколько вершин графа, либо таковых может не быть.

В графе не может один (или одни) элемент быть максимальным, а другой (или другие) элемент быть оптимальным по Парето.

Итак, если имеется задача многокритериального выбора, описанная на языке бинарных отношений, то её удобно представить наглядно в виде графа. Однако такое удобство хорошо для небольшого количества вершин (альтернатив). Если вершин довольно много, то вся наглядность пропадает и легко можно запутаться. В таком случае граф удобно представить в виде матрицы смежности или матрицы инцидентности.

Матрица смежности вершин графа – это квадратная матрица размера mxm(m – это количество вершин) с элементами:

По матрицам смежности искать максимальные элементы и элементы, оптимальные по Парето – одно удовольствие! Максимальные элементы – это те, чьи строки состоят из всех единиц (кроме себя самих – там может быть как нуль, так и единица). А оптимальные по Парето элементы – это те, чьи столбцы состоят из всех нулей.

Матрица инцидентности графа – это матрица, строки которой соответствуют вершинам, а столбцы – дугам. При этом предполагается, что граф не должен иметь петель.


Элементы матрицы инцидентности будут такими:

сij =

Видим, что каждый столбец должен содержать одну единицу и одну минус единицу, остальные элементы столбцов – нули. То есть каждая дуга из одной вершины выходит и в другую вершину входит.

Налицо также очевидна закономерность: максимальные элементы – это те, чьи строки содержат единиц на одну меньше, чем количество строк (вершин), а оптимальные по Парето элементы – это те, чьи строки не содержат минус единиц.

Используя замечательные особенности матриц смежности и инцидентности графов, не составит большого труда разрабатывать компьютерные программы по принятию решений для задач выбора, описанных на языке бинарных отношений.

Раздел 6. Принятие корпоративных решений

6.1 Групповая оценка объектов

В приведенном выше материале подразумевалось, что ЛПР – это некий эксперт-аналитик, принимающий решение по поставленной проблеме. А если проблемой занимаются несколько экспертов? А решение то должно быть одно! Такая задача называется задачей группового выбора или задачей принятия корпоративного решения.

Тут нужно отметить один важный психологический момент. Взрослого человека (начиная лет с 5-10) практически никогда невозможно заставить изменить свое мнение. (Есть, конечно, "безотказные" методы типа насилия, или денежного подкупа, но они к науке не имеют никакого отношения.) Поэтому эксперты в группе всегда будут:

Иметь разные мнения по поводу набора критериев, по которым надо оценивать альтернативные решения;

Иметь разные мнения о сравнительной значимости (весовых коэффициентах) критериев;

Давать разные оценки альтернатив по критериям;

Кроме этого эксперты будут иметь разную компетентность.

Исходя из таких очевидных фактов, можно с уверенностью утверждать, что у группы экспертов всегда должен быть руководитель.

Каждый из экспертов группы в принятии своего решения будет руководствоваться своим опытом и своими знаниями. Будем надеяться, что вышеприведенный материал окажет экспертам некую посильную помощь. Материал данного подраздела предназначен для руководителей групп экспертов, которые на основе всех решений группы обязаны приять единственное правильное решение.

Вспомним, как обычно преодолеваются групповые разногласия? В подавляющем большинстве случаев это делается с помощью обыкновенного голосования.

Для начала необходимо найти множество Парето: это будут альтернативы А1, А2, А4. Оптимальное решение будем искать среди них. Для проведения голосования определим функцию полезности:

В последнем столбе таблицы размещены результаты голосования. Как видим, оптимальным решением является альтернатива А4 – за неё проголосовало пять экспертов из девяти – больше половины.

При всей простоте, широкой распространенности и многовековой исторической традиции использования метод голосования имеет один существенный недостаток. Голосование не считается с мнением меньшинства . Мнение меньшинства полностью игнорируется! Но иногда ведь случается, (правда очень редко) что именно среди этого меньшинства и находилось наилучшее решение! Кроме практического результата голосование наносит психологический удар по тем экспертам, мнения которых были отброшены. Математические методы принятия корпоративных решений стараются исправить этот недостаток. Учитываются мнения всех экспертов.


Рассмотрим такую функцию полезности с нормирующими множителями:

В этом случае оптимальным решением является альтернатива А1.

Заметим, что такой способ учитывает также и то, что эксперты пользовались разными шкалами оценок объектов.

А теперь попробуем учесть ещё и степень компетентности каждого эксперта. Функция полезности при этом будет выглядеть так:

где aj – те же нормирующие множители,

kj – коэффициенты компетентности экспертов.

Ниже будет рассмотрен один из способов определения коэффициентов компетентности экспертов.

А пока рассмотрим ту же задачу с уже якобы вычисленными коэффициентами компетентности экспертов. В таблице снова сначала – условие, ниже – результаты:

А теперь мы получили в качестве оптимальной альтернативу А2.

Надо отметить, что приведенные два последних способа принятия группового решения годятся только для согласованных суждений экспертов. Согласованность – это степень расхождения мнений экспертов. Методика вычисления согласованности оценок экспертов достаточно сложна. По необходимости с ней можно ознакомиться в специальной литературе по принятию корпоративных решений.

Если эксперты честно оценивают реальный объект, то их оценки не должны сильно расходиться. Если же они все-таки существенно расходятся, то можно получить часто упоминаемую в литературе так называемую "среднюю температуру по больнице". Действительно, если сложить температуру всех высокотемпературных больных и температуру тел в морге, а потом поделить на общее количество замеров, то можно получить 36,6°. Свидетельствует ли это о том, что "в среднем" все находящиеся в больнице здоровы?

Если согласованность оказалась низкой, то нужно пытаться выяснить причину расхождений и по возможности попытаться устранить её. Часто причиной может быть отсутствие важной информации у некоторых экспертов. В некоторых случаях эксперты разбиваются на две устойчивые группы. Группы нужно уметь выявлять и обрабатывать отдельно.

6.2 Определение коэффициентов компетентности экспертов

Теперь опишем одну из методик определения коэффициентов компетентности экспертов.

Рассмотрим опять нашу задачу, в которой принимали участие девять экспертов. Предложим каждому из девяти экспертов в отдельности самому сформировать экспертную группу. Каждый эксперт может включить в экспертную группу произвольное количество участников. Себя он может как включать в эту группу, так и нет. В результате получим матрицу Х, состоящую из элементов хij:


По данным этой матрицы вычисляются коэффициенты компетентности экспертов:

Вычислим коэффициенты компетентности экспертов для нашей задачи и результаты занесем в таблицу:

Крайний правый столбец – это коэффициенты компетентности экспертов. Они уже были использованы в примере группового выбора, рассмотренного выше.

Раздел 7. Критерии модульного оценивания знаний

Кредитно-модульная система – это модель организации учебного процесса, которая основывается на объединении двух составляющих: модульной технологии обучения и кредитов (зачетных единиц) и охватывает содержание, формы контроля качества знаний, навыков и учебной деятельности студента в процессе аудиторной и самостоятельной работы.

Рейтинговая система оценивания – это система определения качества выполненной студентом всех видов аудиторной и самостоятельной работы и уровня приобретенных им знаний и навыков путем оценивания в баллах результатов этой работы во время текущего модульного и полусеместрового итогового контроля, с последующим переведением рейтинговой оценки в баллах в оценки традиционной национальной шкалы и шкалы ECTS.

Рейтинговая оценка состоит из баллов, которые студент получает за определенную учебную деятельность на протяжении усвоения данного модуля – тестирование, выполнение и защита индивидуальных задач (домашних контрольных работ), выполнение аудиторной самостоятельной работы и выступления на практических занятиях и т.п..

Семестровый курс дисциплины "Теория принятия решений" разбит на 4 модуля. В конце каждого модуля проводится модульный контроль в виде аудиторной контрольной работы (АКР) или защиты домашней контрольной работы (ДКР), который оценивается до 25 баллов.

Аудиторная контрольная работа – 20 баллов;

Выполнение аудиторной самостоятельной работы и выступления на практических занятиях – 5 баллов.

Домашняя контрольная работа – 20 баллов;

Выполнение аудиторной самостоятельной работы и выступления на практических занятиях – 5 баллов.

Аудиторная контрольная работа – 20 баллов;

Выполнение аудиторной самостоятельной работы и выступления на практических занятиях – 5 баллов.

Общая балльная оценка за полусеместр выводится простой суммой полученных студентом баллов за все модули полусеместра. Максимальная полусеместровая оценка составляет 100 баллов. Оценка по национальной шкале выводится в соответствии с таблицей:

Раздел 8. Задания для самостоятельной работы студентов

8.1 Домашняя контрольная работа

Согласно рабочей учебной программе дисциплины "Теория принятия решений" в модуле №3 выполняется домашняя контрольная работа.

Цель домашней контрольной работы – детальная и более тщательная проработка лекционного и практического материала, с целью проверки и контроля степени его усвоения, формирование у студентов предусмотренных рабочей программой навыков.

Домашняя контрольная работа выполняется на бумажных носителях.

Домашняя контрольная работа содержит 30 вариантов. Каждый вариант содержит четыре задания:

Задание №1 – решение матричной игры в чистых стратегиях;

Задание №2 – решение матричной игры в смешанных стратегиях симплекс-методом;

Задание №3 – решение матричной игры в смешанных стратегиях графическим методом.

Студент выбирает вариант домашней контрольной работы согласно своему порядковому номеру в журнале списка своей группы. Контрольная работа, не соответствующая своему варианту, не проверяется и к защите не допускается .

Задание №1.

Определить оптимальные чистые стратегии и цену игры:

1 вариант2 вариант3 вариант


4 вариант5 вариант6 вариант

7 вариант8 вариант9 вариант


Задание №2.

Определить симплекс-методом оптимальные смешанные стратегии и цену игры:

1 вариант2 вариант3 вариант


4 вариант5 вариант6 вариант

7 вариант8 вариант9 вариант

10 вариант11 вариант12 вариант

13 вариант14 вариант15 вариант

16 вариант17 вариант18 вариант

19 вариант20 вариант21 вариант


22 вариант23 вариант24 вариант

25 вариант26 вариант27 вариант

28 вариант29 вариант30 вариант

Задание №3.

Определить графическим методом оптимальные смешанные стратегии и цену игры:

1 вариант2 вариант3 вариант

4 вариант5 вариант6 вариант

7 вариант8 вариант9 вариант


10 вариант11 вариант12 вариант

13 вариант14 вариант15 вариант

16 вариант17 вариант18 вариант

19 вариант20 вариант21 вариант

22 вариант23 вариант24 вариант

25 вариант26 вариант27 вариант

28 вариант29 вариант30 вариант

8.2 Вопросы к модульным тестированиям

Общие вопросы к всем модулям:

1.Что такое исследование операций?

2.Что такое ЛПР?

3.Что такое математическая модель?

4.Что такое переменные?

5.Что такое альтернатива?

6.Что такое план?

7.Что такое ограничение?

8.Что такое допустимое множество?

9.Что такое допустимый план?

10.Что такое целевая функция?

11.Что такое оптимальный план?

12.Что такое математическое моделирование?

13.Что такое математическое программирование?

14.Что такое линейное программирование?

15.Что такое целочисленное программирование?

16.Что такое динамическое программирование?

17.Что такое нелинейное программирование?

18.Что такое задача принятия решения?

19.Что такое бинарные отношения?

20.Что такое ориентированный граф?

21.Что такое множество Парето?

22.Найти множество Парето.

23.Что такое принятие решения в условиях определенности?

Вопросы к модулю №1:

24.Что такое принятие решения в условиях риска?

25.Какие условия использования критерия Байеса?

26.Решить задачу с помощью критерия Байеса.

27.Какие условия использования критерия Лапласа?

28.Решить задачу с помощью критерия Лапласа.

29.Какие условия использования критерия Гермейера?

30.Решить задачу с помощью критерия Гермейера.

31.Какие условия использования критерия Ходжа-Лемана?

32.Решить задачу с помощью критерия Ходжа-Лемана.

Воп росы к модулю №2:

33.Что такое принятие решения в условиях неопределенности?

34.Какие условия использования принципа максимина?

35.Решить задачу с помощью принципа максимина.

36.Какие условия использования критерия азартного игрока?

37.Решить задачу с помощью критерия азартного игрока.

38.Какие условия использования критерия произведений?

39.Решить задачу с помощью критерия произведений.

40.Какие условия использования критерия Севиджа?

41.Решить задачу с помощью критерия Севиджа.

42.Какие условия использования критерия Гурвица?

43.Решить задачу с помощью критерия Гурвица.

Вопросы к модулю №4:

44.Что такое принятие решения в условиях противодействия?

45.Что такое матричная игра?

46.Что такое платежи матричной игры?

47.Что такое матрица платежей?

48.Что такое матричная игра с нулевой суммой?

49.Что такое матричная игра с ненулевой суммой?

50.Что такое седловая точка?

51.Что такое чистая стратегия?

52.Что такое смешанная стратегия?

53.Найти седловую точку матрицы.

54.Решить матричную игру в чистых стратегиях.

55.Найти множество Парето для задачи двукритериального выбора.

56.Решить задачу многокритериального выбора методом линейной аддитивной свертки.

57.Решить задачу многокритериального выбора методом мультипликативной свертки.

58.Решить задачу многокритериального выбора методом максиминной свертки.

59.Решить задачу про групповую экспертную оценку.

60.Решить задачу экспертной оценки объектов с учетом компетентности экспертов.

8.3 Контрольные вопросы к экзамену по дисциплине

1. Исследование операций как наука о принятии оптимальных решений.

2. Построение математической модели.

3. Математическое программирование. (Общий обзор, основные понятия, классы задач.)

4. Принятие решения: постановка задачи, возможные случаи.

5. Принятие решений в условиях риска. Критерий Байеса.

6. Принятие решений в условиях риска. Критерий Лапласа.

7. Принятие решений в условиях риска. Критерий Гермейера.

8. Принятие решений в условиях риска. Критерий Ходжа-Лемана.

9. Принятие решений в условиях неопределенности. Принцип максимина.

10. Принятие решений в условиях неопределенности. Критерий азартного игрока.

11. Принятие решений в условиях неопределенности. Критерий произведений.

12. Принятие решений в условиях неопределенности. Критерий Севиджа.

13. Принятие решений в условиях неопределенности. Критерий Гурвица.

14. Принятие решений в условиях противодействия. Общие понятия.

15. Матричные игры.

16. Чистые стратегии, седловая точка, цена игры.

17. Смешанные стратегии.

18. Представление матричной игры в виде задачи линейного программирования.

19. Графический метод решения матричной игры.

20. Принятие решений в условиях нескольких критериев выбора (многокритериальный выбор).

21. Линейные свёртки.

22. Максиминная и лексикографическая свёртки.

23. Мультипликативные свёртки.

24. Описание выбора на языке бинарных отношений.

25. Множество Парето. Максимальный элемент.

26. Матрицы смежности и инцидентности.

27. Принятие корпоративных решений.

28. Компетентность экспертов.

Контрольные экзаменационные вопросы используются в случае сдачи студентом экзамена по дисциплине на повышенную оценку в сравнении с оценкой, которую он получил по рейтингу полусеместра. В соответствии с действующим "Положением о кредитно-модульной системе организации учебного процесса и рейтинговом оценивании знаний студентов ЗГИА" оценка, которая получена на экзамене является окончательной и именно она вносится в экзаменационную ведомость и индивидуальный план (зачетную книжку) студента.

Учебно-методический материал по дисциплине

Основная литература (имеется в наличии в библиотеке ЗГИА)

1.Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособие для вузов. - М.: Высшая школа, 1986. - 319 c.

2.Волков И.К., Загоруйко Е.А. Исследование операций: Учебник для втузов / Ред. Зарубин В.В., Крищенко А.П. - 2-е изд. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 435 c.

3.Евланов В.Г. Теория и практика принятия решений. – М.: Экономика, 1984. – 175 с.

4.Кини Р.Л., Райфа Х. Принятие решений при многих критериях: предпочтения и замещения. – М.: Радио и связь, 1981. – 560 с.

5.Колпаков В.М. Теория и практика принятия управленческих решений: Учеб. пособие для вузов. – К.: МАУП, 2000. – 254 с.

6.Костевич Л.С., Лапко А.А. Теория игр. Исследование операций: Учеб. пособие для вузов. - Мн.: Вышэйшая школа, 1982. - 230 c.

7.Кузнецов Ю.Н., Кузубов В.И., Волощенко А.Б. Математическое программирование: Учеб. пособие для вузов - М.: Высшая школа, 1976. - 350 c.

8.Мулен Э. Кооперативное принятие решений: Аксиомы и модели. - М.: Мир, 1991. - 463c.

9.Таха Хемди А. Введение в исследование операций, 7-е изд: Пер. с англ. – М.: Изд. дом "Вильямс", 2005. – 912 с.

10.Теория выбора и принятия решений Учеб. пособие для вузов. - М.: Наука, 1982. - 328 c.

11.Тоценко В.Г. Методы и системы поддержки принятия решений: Алгоритмический аспект / НАН Украины. Ин-т пробл. регистрации информ. - К.: Наук. думка, 2002. – 381 c.

12.Трухаев Р.И. Модели принятия решений в условиях неопределенности / АН СССР. Дальневост. науч. центр. Хабаров. комплекс НИИ. - М.: Наука, 1981. - 257 c.

Дополнительная литература

13.Вентцель Е.С. Исследование операций. – М.: Советское радио, 1972.

14.Гафт М.Г., Подиновский В.В. О построении решающих правил в задачах принятия решений. - Автоматика и телемеханика, №6, 1981.

15.Джексон П. Введение в экспертные системы: Пер. с англ.: Учеб. пособие. – М.: Изд. дом "Вильямс", 2001.

16.Ершов А.Т., Карандаев И.С., Статкус А.В. Матричные игры и графы. – М.: МИУ, 1986.

17.Ларичев О.И. Наука и искусство принятия решений. – М.: Наука, 1979.

18.Ларичев О.И. Теория и методы принятия решений, а также Хроника событий в Волшебных странах: Учебник. – М.: Логос, 2003.

19.Сигал И.Х., Иванова А.П. Введение в прикладное дискретное программирование: модели и вычислительные алгоритмы: Учеб. пособие. – М.: ФИЗМАТЛИТ, 2002. – 240с.

20.Фон Нейман Дж., Моргенштерн О. Теория игр и экономическое поведение. – М.: Наука, 1970.

21.Черноруцкий И.Г. Методы принятия решений. – СПб.: БХВ-Петербург, 2005. – 416 с.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КОНТРОЛЬНАЯ РАБОТА

«Концептуальные и материальные основы системной методологии принятия решений»

1. Введение…………………………………………………………………….3

2. Основные понятия и определения теории принятия решений………….4

3. Система предпочтений лица, принимающего решения…………………6

4. Методология разработки управленческого решения……………………9

4.1. Методы разработки управленческих решений: аналитические, статистические, математические…………………………………………9

4.2. Методы разработки управленческих решений: активизирующие, эвристические и метод сценариев………………………………………10

4.3. Методы разработки управленческих решений: экспертные методы…………………………………………………………………….11

5. Классификация и типология управленческих решений………………..13

6. Технология и организация разработки решений………………………..14

6.1. Организация процесса разработки решения……………………….14

6.2. Организация выполнения принятых решений……………………..15

6.3. Организация процесса коллективного принятия решений……….16

7. Моделирование процесса разработки решения………………………...18

8. Разновидности математических моделей……………………………….20

8.1. Динамические модели………………………………………………20

8.2. Балансовые модели………………………………………………….20

8.3. Поиск равновесия……………………………………………………20

9. Постановка задачи векторной оптимизации……………………………22

10. Множество Эджворта – Парето………………………………………….24

10.1. Модель многокритериального выбора……………………………24

10.2. Аксиомы разумного выбора……………………………………….24

10.3. Аксиома Парето…………………………………………………….26

10.4. Принцип Эджворта-Парето……………………………………...27

1. ВВЕДЕНИЕ

Дисциплина, изучающая процессы принятия решений и методы, которые используют управленцы, чтобы делать оптимальный выбор в ситуациях с высоким уровнем неопределенности и риска. Она занимается, с одной стороны, описанием того, как на практике решаются проблемные ситуации, а с другой - разработкой стратегий, использование которых обеспечит принятие наилучших решений в будущем.

Теория принятия решений сформировалась на базе научного менеджмента. В области принятия руководящих решений традиционно существовало своеобразное разделение труда, при котором одни - академические ученые - изучали, как следует управлять, а другие - администраторы - осуществляли управление на практике. Однако еще пионеры в области теории управления, такие, как Вудро Вильсон и Леонард Уайт, выступали за создание теории, способной сделать практику руководства государственными учреждениями более рациональной.

Впервые модели теории принятия решений были использованы в исследованиях государственного управления в 1947 г., когда в журнале «Паблик администрейшн ревью» появилась статья Герберта Саймона «Поговорки управления». Саймон утверждал, что принятие решений - это суть процесса управления и что прогресс в области менеджмента можно обеспечить, обучая руководителей методам принятия рациональных решений, а не пытаясь изобрести какие-то идеальные организационные структуры.

Теория принятия решений вышла на первый план в 1960-х гг., благодаря развитию менеджмента, исследований операций, вычислительной техники и системного анализа. Именно эта дисциплина, изучающая создание математических моделей реальности, оказала основное влияние на развитие компьютерного моделирования социальных процессов.

Данная теория используется менеджерами и аналитиками для того, чтобы структурировать описание проблем и оценивать возможные варианты их решения. Так, теория игр, одно из ответвлений этой дисциплины, широко используется экспертами из Госдепартамента США при прогнозировании возможного развития событий на международной арене. Другая дочерняя область - оценка риска - нашла применение в практике регулирующих учреждений, таких, как Агентство по защите окружающей среды, определяющего стандарты экологической безопасности.

2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ

В данной работе следует использовать и придерживаться смысла следующих основных понятий: управление, ЛПР, проблема или задача (управления), решение, цель (управления, деятельности), операция (кибернетическая), альтернатива, активные ресурсы, результат, модель, условия (разработки решений).

Обращаю внимание на то, что эти основные понятия следует воспринимать только как термины, а не как строгие определения. Причин тому, как минимум две.

Во-первых, для некоторых категорий ТПР просто нет строгих определений. Во-вторых, любое определение всегда достаточно косвенно, а ТПР - динамическая, бурно развивающаяся наука, которая постоянно пересматривает свой понятийный и методический аппарат. Следовательно, нет необходимости учить наизусть те слова, посредством которых толкуется смысл основных понятий, однако обязательно следует глубоко проникнуться теми мыслями и образами, которые за этими словами стоят, уметь их интерпретировать.

Управление . Как уже отмечалось, решение проблемы, стоящей перед ЛПР, возможно только путем направления и задействования активных ресурсов для исполнения конкретных заданий или работ. Ничто само по себе не делается. Людям, принимающим участие в операции, нужно указать, где, когда, что и с помощью чего сделать, каковы требования качеству выполняемых заданий или работ, каковы допустимые вариации от намеченных заданий и при каких форс-мажорных обстоятельствах следует принять экстренные меры, каковы эти меры и проч. Все это объединяется одним понятием «управление». Управлять - это значит направлять кого-либо или что-либо к намеченной цели для достижения желаемого результата.

Главное требование к качеству управления - это его непрерывность.

Решение . Обычно одну и ту же задачу можно решить разными способами. Однако качество исхода операции, т. е. значения ее результатов, зависит не только от качества активных ресурсов и условий их применения, но и от качества способа задействования этих ресурсов в этих условиях. В этой связи в данном случае слово «решение» чаще всего будет интерпретироваться как наилучший способ разрешения проблемы, стоящей перед ЛПР, как наиболее предпочтительный способ достижения намеченной ЛПР цели. Следовательно, значение слова «решение» в нашем случае будет несколько отличаться от того значения, которое ему приписывается, например, в математике, когда говорят о решении математической задачи. В математике правильное решение правильно поставленной задачи всегда одно и то же, независимо от того, кто и в каких условиях эту задачу решает. Математическое решение всегда объективно. В отличие от него решение проблемы - субъективно, так как разные ЛПР могут выбрать разные, понравившиеся именно им способы разрешения проблемы. Да к тому же условия решения проблемы накладывают существенный отпечаток на выбор ЛПР: одно и то же ЛПР в разных условиях может предпочесть в общем случае неодинаковый способ устранения проблемы.

Цель . Формализованное описание того желаемого состояния, достижение которого отождествляется в сознании ЛПР с решением проблемы или задачи. Цель описывается в виде требуемого результата.

Альтернатива. Это условное наименование какого-то из возможных (допустимых в соответствии с законами природы и предпочтениями ЛПР) способов достижения цели. Каждая отдельная альтернатива отличается от других способов решения проблемы последовательностью и приемами задействования активных ресурсов, т. е. специфическим набором указаний кому, что, где с помощью чего и к какому сроку сделать.

Активные ресурсы - это все то, что может быть использовано ЛПР для решения проблемы. Главными из активных ресурсов всегда следует считать людей, время, финансы (деньги) и расходные материалы, имеющиеся в распоряжении ЛПР.

Результат . Под результатом будем понимать специальную форму описания наиболее важных для ЛПР характеристик исхода операции. При исследовании операции степень предпочтительности (или, наоборот, непредпочтительности) ее результатов представляют в наиболее подходящей для этого шкале: числовой, количественной или качественной.

Условия разработки решений. Каждая проблема всегда связана с конкретной обстановкой, ситуацией и вполне определенным комплексом условий. Проблема всегда решается в рамках существующего положения вещей. Анализируя тот или иной способ достижения цели, ЛПР должно четко представлять закономерности, связывающие ход и исход операции с принятыми решениями. Совокупность представлений об этих закономерностях, конечно, воспринимается ЛПР в упрощенной, модельной форме. Некоторые из закономерностей удается фиксировать в строго формальном виде.

3. СИСТЕМА ПРЕДПОЧТЕНИЙ ЛИЦА, ПРИНИМАЮЩЕГО РЕШЕНИЯ

Принятие решений в организациях - это чрезвычайно сложный процесс, который сопровождается психологическими, организационными и техническими трудностями. Задачи принятия решений редко формулируются в «чистом» виде, когда четко задано множество альтернатив, имеющих определенные оценки по известным показателям. В этом случае остается лишь сравнить эти альтернативы между собой при помощи какого-либо метода и выбрать среди них наилучшую или удовлетворительную. Однако в реальной жизни все не так просто. Дело в том, что перед тем, как сделать выбор, необходимо провести огромную работу - выполнить диагноз решаемой проблемы, собрать информацию об альтернативах и факторах, влияющих на результаты решений, оценить последствия каждой альтернативы, организовать (если это необходимо) их коллективное обсуждение и решить много других задач. Выполнить весь объем этой работы одному человеку не под силу. Поэтому в принятии решений обычно участвуют разные люди или группы людей, исполняющие в этом процессе определенные роли. Среди них выделяют пять основных ролей:

Владелец проблемы

Лицо, принимающее решение

Активная группа

Эксперт

Аналитик

Владелец проблемы. В любой реальной задаче выбора существует человек, который отвечает за решение возникшей проблемы. Он называется владельцем проблемы. Можно сказать, что владелец проблемы - это человек, который, по мнению окружающих или своему служебному положению, должен решать проблему и нести ответственность за принятые решения. Эти решения обычно непосредственно влияют на положение и благосостояние владельца проблемы. Например, владельцы всех проблем в организациях - это руководители организаций, которые, однако, могут поручить решение этих проблем другим людям, делегируя им часть своих полномочий.

Лицо, принимающее решение . Ключевая роль в процессе принятия решений - лицо, принимающее решение (ЛПР), которое далеко не всегда является владельцем проблемы, ЛПР - это индивид или группа людей, которые реально осуществляют выбор и несут ответственность за принятые решения в соответствии со своими полномочиями. Если решение принимается группой людей, то в этом случае можно использовать термин «группа, принимающая решение» (ГПР).

Если говорить о соотношении ролей владельца проблемы и ЛПР, то на практике возможны три различных ситуации:

1. Владелец проблемы и ЛПР - один и тот же человек.

В этом случае владелец проблемы никому не доверяет ее решение, кроме себя самого. Конечно, при этом он может собирать информацию, общаясь со своими подчиненными, советоваться с ними, прибегать к услугам экспертов и аналитиков, но окончательное решение владелец проблемы всегда принимает самостоятельно.

2. Владелец проблемы входит в состав группы, принимающей решение.

В этой ситуации владелец проблемы является лишь одним из нескольких человек, принимающих участие в ее решении. Причем, несмотря на более высокий статус и положение внутри группы, владелец проблемы имеет равные права с другими участниками обсуждения. В этом случае он не может принять решение единолично и соглашается с любым решением, принятым всей группой.

3. Владелец проблемы и ЛПР - разные люди.

Такие ситуации возникают, если владелец проблемы, например руководитель организации, «перекладывает» принятие решений на других людей (своих подчиненных, консультантов, экспертов) и дает им для этого необходимые полномочия. В этом случае владелец проблемы не снимает с себя ответственности, но заранее соглашается с любым решением, которое будет принято другим человеком или группой.

Активные группы . На принятие решений может сильно влиять позиция активных групп. Активная группа - это группа людей, имеющих общие интересы по отношению к решаемой проблеме. Как правило, роль активной группы исполняют другие организации, которые так или иначе заинтересованы в решении возникшей проблемы. Например, активной группой можно считать общественную организацию по защите окружающей среды, протестующую против решения о строительстве нового промышленного предприятия в экологически чистом районе. Активной группой может быть конкурирующая организация, которая пытается помешать осуществлению ваших планов и предлагает «договориться», т.е. найти компромиссное решение проблемы. Конечно, теоретически ЛПР может исходить только из своих интересов и не обязано учитывать мнение активных групп, но практически такая позиция может привести к обострению конфликта и нежелательным последствиям в будущем. Поэтому разумное ЛПР всегда принимает во внимание интересы активных групп, учитывая их позиции и критерии выбора в процессе принятия решений.

Эксперты . В процессе принятия решений важную роль играют эксперты - люди, которые профессионально лучше, чем ЛПР, знают отдельные аспекты проблемы и выступают в роли источника информации, необходимой для принятия решения. К экспертам обычно обращаются, чтобы выяснить причины возникшей проблемы, разработать варианты ее решения, оценить каждую альтернативу и сделать прогноз развития событий. Например, принимая решение о разработке нового товара, ЛПР может обратиться за советом к экспертам-маркетологам, которые лучше представляют ситуацию на рынке и могут оценить уровень спроса на этот товар. Принимая решение о вложении денег в ценные бумаги, ЛПР может обратиться за информацией к специалистам фондового рынка, которые оценят ожидаемый доход и риск инвестиций.

Предоставляя необходимую информацию, эксперты высказывают свое субъективное мнение. Однако если эксперт, будучи профессионалом в своем деле, беспристрастно оценивает ситуацию, тощего оценки близки к объективным. При этом всегда следует помнить, что экспертная информация - это не решение, а лишь полезная информация, помогающая принять решение. Принимать решение на основе своих предпочтений может только ЛПР. Эксперты отвечают только за свои рекомендации. В общем случае мнения экспертов и ЛПР могут не совпадать.

Аналитики . В подготовке сложных решений, имеющих обычно стратегический характер, принимают участие аналитики (или консультанты по принятию решений). Их роль заключается в рациональной организации процесса принятия решений. Аналитики выполняют следующие основные функции:

Оказание помощи ЛПР и владельцу проблемы в правильной постановке задачи;

Выявление ролей и позиций активных групп;

Организация работы с экспертами;

Выявление предпочтений ЛПР;

Разработка и применение методов принятия решений.

Аналитик, в отличие от эксперта, обычно не дает никаких личных оценок, а только помогает ЛПР уяснить свои предпочтения, взвесить все «за» и «против» и прийти к разумному компромиссу.

Важнейшая задача и специфика работы аналитика состоит в изучении и выявлении системы предпочтений ЛПР . Опытный руководитель, как правило, четко представляет свои цели, сразу уясняет суть проблемы и вырабатывает основные варианты ее решения. Однако результаты многих исследований показывают, что ЛПР без дополнительной аналитической поддержки часто используют упрощённые или противоречивые правила и критерии выбора. Причины такого поведения заключаются не только в индивидуальных особенностях ЛПР, но и в том, что существуют объективные ограничения человеческой системы переработки информации. Именно поэтому возникают многие ошибки и противоречия человека в процессе принятия решений. Чтобы их избежать, можно обратиться к услугам аналитика, который должен помочь ЛПР последовательно и логично выразить свои предпочтения и принять окончательное решение.

Главный инструмент аналитика - методы принятия решений, которые в хорошем смысле «механизируют» мышление ЛПР и определяют порядок получения и обработки всей необходимой информации. Правильно построенные методы принятия решений позволяют выявить предпочтения ЛПР, сравнить между собой все альтернативы и служат своеобразным усилителем человеческих возможностей.

4. МЕТОДОЛОГИЯ РАЗРАБОТКИ УПРАВЛЕНЧЕСКОГО РЕШЕНИЯ

4.1. Методы разработки управленческих решений: аналитические, статистические, математические

В теории разработки управленческих решений выделяются следующие группы методов: аналитические, статистические, математические, эвристические, активирующие, экспертные, методы сценариев и дерева решений. Каждый метод основан на исследовании специально разработанных моделей, которые периодически проверяются на достоверность, точность и эффективность.

Основная задача каждой модели – упростить процесс разработки решения. Точность определяется соответствием моделируемых процедур и операций при разработке решений реальным процессам.

Метод аналитических зависимостей предусматривает использование формул, графиков, диаграмм, логических соотношений, которые являются типовыми, объективно существующими и выработанными теорией и практикой в течение многих лет. Каждый руководитель должен знать кривые спроса и предложения, зависимость стиля управления от характеристик организации, качества решений от полноты информации и т.д. Часть закономерностей руководители отыскивают сами методом проб и ошибок, и это уже их интеллектуальная собственность. Основу аналитического метода составляет наблюдение, обобщение, анализ и синтез, абстрагирование, формализация, теория вероятности и математическая статистика, теория массового обслуживания.

Статистические методы основаны на использовании информации о прошлом удачном опыте ряда организаций в какой-либо сфере деятельности. Данные методы реализуются путем сбора, обработки и анализа статистических материалов.

Статистические методы на стадии разработки управленческого решения

Статистические методы на стадии выбора управленческого решения

Математические методы лучше всего представлены математическим программированием, которое позволяет рассчитывать лучший вариант решения по критерию оптимальности:

Разработчик решения вводит в компьютер набор ситуаций, подлежащих изменению в соответствии с целью, критерии выбора решений и с помощью математических соотношений либо получает новое решение, либо выбирает подходящее на основе имеющегося набора альтернативных решений.

4.2. Методы разработки управленческих решений: активизирующие, эвристические и метод сценариев

Активизирующие методы принятия решений делятся на две группы. Методы психологической активизации включают конференции идей, методы мозговой атаки, метод вопросов . Методы подключения новых интеллектуальных источников включают теоретико-игровые методы, метод наставничества, работу с консультантами .

Методы психологической активизации созданы в 40-е годы и широко известны во всем мире. Метод конференции идей основан на стимулировании процесса мышления на уровне подсознания, когда команде численностью до 10 человек на 30 – 40 минут даются варианты решения 2 – 3 взаимосвязанных идей. Если требуется большее количество вариантов идей, применяется интеллектуальный штурм типа мозговой атаки , когда команда численностью до 10 человек за 30 – 40 минут дает до 100 вариантов идей, от прагматических до еретических. Метод контрольных вопросов основан на наборе предварительно сформулированных вопросов, ответы на которые формируют новый подход к решениям: что можно убавить или добавить, увеличить и т.д.

Вторая группа активизирующих методов применяется, когда имеется большой объем информации и недостаток времени для ее осмысления. Теоретико-игровые методы основаны на использовании ПК и материала для поддержки управленческих решений, заменяющих совещания. Метод наставничества и работа с консультантами позволяют значительно сократить срок разработки и повысить качество решений.

При разработке управленческих решений для нетиповых, творческих задач применяются эвристические методы. Это новые условия, в которых оказывается руководитель или специалист, когда «не работают» формализованные методы и используются приемы, основанные на опыте Сократа. Суть этих методов – извлечение скрытой в подсознании информации путем стимулирования мышления посредством искусно наводящих вопросов. Существует множество вариантов эвристического приема. Для наглядности приведем один из них – пятнадцатишаговый эвристический прием:

1.Постановка задачи в обобщенном виде.

2. Конкретизация задачи для места и времени.

3. Формулирование обратной задачи, т.е. определение того, что должно быть в конце.

4. Подключение внешних структур.

5. Оценивание и критика внешних структур.

6. Поиск условий и факторов решения проблемы.

7. Что получилось при пересмотре от конца к началу?

8. Сближение с целью.

9. Составление модели.

10. Поиск аналогичных решений.

11. Рассмотрение модели с различных сторон.

12. Возвращение к условиям задачи.

13. Предположение конфликта.

14. Какие еще есть идеи?

15. К чему приведет суть решения, что придется переструктурировать?

Заключение.

В случае большого размера организации и необходимости решать стратегические задачи используется метод сценариев. Суть его состоит в представлении задачи в виде многообразного ее прохождения через ситуации, конфликты, неудовольствия и прогноз возможных результатов решения как эпилога в сценарии. Сценарий обсуждается на совещании заинтересованных в его реализации лиц.

4.3. Методы разработки управленческих решений: экспертные методы

Экспертные методы основаны на совокупном мнении специалистов чаще в пересекающихся областях деятельности: социологии, психологии, математике, логике и т.д. Основные условия применения экспертных методов следующие:

1. Наличие квалифицированных в данной области специалистов для формирования экспертной комиссии;

2. Принятие условия, что решения, принимаемые комиссией, являются безусловными для участников, представивших на оценку свой вариант решения.

Основные направления принятия экспертных оценок:

а) определение целей и выбор приоритетности на дереве целей;

б) составление экспертного прогноза по возможному развитию ситуаций;

г) нахождение наиболее важного критерия для оценки эффективности принимаемых решений;

д) принятие коллективных решений методом Дельфи, мозговых штурмов и др., где требуется заключение экспертов.

В настоящее время разработано несколько приемов выработки экспертных оценок.

5. КЛАССИФИКАЦИЯ И ТИПОЛОГИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ

Для совершенствования разработки управленческих решений используется классификация решений. Чаще всего на практике встречаются следующие группы управленческих решений: по функциональной направленности – планирующие, организующие, координирующие, контролирующие; по источнику возникновения – ситуационные, по предписанию, программные, инициативные; по организации разработки – индивидуальные, коллегиальные, коллективные; по направлению воздействия – внутренние и внешние; по времени действия – стратегические, тактические, оперативные; по сфере действия – экономические, социальные, организационные, научные; по масштабу воздействия – комплексные и частные; по способу фиксации – письменные, на электронных носителях, устные; по числу критериев – одно- и многокритериальные; по методу переработки информации – алгоритмические и эвристические; по глубине воздействия – одно- и многоуровневые; по характеру реализации – уравновешенные, импульсивные, инертные, рискованные, осторожные; по форме представления – указание, акт, протокол, инструкция, договор, соглашение, план, контракт, оферта, акцепт, положение, правило, модель.

Определенный интерес представляет типология управленческих решений, когда все их многообразие можно условно объединить в три типа в зависимости от степени формализации проблемы, творческого вклада руководителя в разработку решения и степени стереотипности ситуации.

В зависимости от степени формализации выделяются следующие типы решений:

Хорошо структурированные, когда зависимости между элементами ситуации численно определимы;

Слабоструктурированные, содержащие как количественные, так и качественные элементы;

Неструктурированные, когда количественные зависимости неизвестны.

В зависимости от творческого вклада руководителя в разработку решений различаются:

Рутинные решения, принимаемые по стандартной программе;

Селективные решения, когда известно число возможных вариантов ответов, задача руководителя – сделать правильный выбор;

Адаптационные, рассчитанные на непредусмотренные трудности и требующие личной инициативы и творчества;

Инновационные решения, необходимые для решения сложных проблем.

С учетом стереотипности ситуаций принято выделять программируемые (стандартные) и непрограммируемые решения, принимаемые в новых ситуациях.

Знание типологии управленческих решений помогает руководителю правильно выбрать технологию решения проблемы.

6. ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ РАЗРАБОТКИ РЕШЕНИЙ

6.1. Организация процесса разработки решения

Теория и практика управления дает следующие рекомендации по организации процесса разработки управленческих решений.

Основные принципиальные моменты следующие:

Соблюдение принципа иерархии, координация усилий, контроль за соподчиненностью по уровням при разработке решений;

Создание целевых групп на временной основе для использования знаний и опыта каждого, кто может участвовать в процессе разработки решений;

Формирование инструктивных материалов по проведению формальных процедур при разработке управленческих решений, не усложняя ими процессы и процедуры принятия инновационных управленческих решений;

Создание системы планирования процесса разработки решений, включающей разработку таких элементов плана, как сроки, ресурсы, ответственные за этапы, разделы, вопросы.

Функции, выполняемые руководителем по организации разработки решения, заключаются в следующем:

Управление общим процессом выработки решений;

Определение сущности задачи, участие в ее конкретизации, в выборе критериев оценки решений;

Окончательный выбор решения;

Организация внедрения управленческого решения.

Ряд организаций ведет системный специальный учет управленческих проблемных ситуаций и способов их разрешения. Для этого многие организации формируют картотеки, состоящие из следующих карточек:

Карточки проблемной ситуации (характеристика ситуации, главная цель принятия решения, ограничения на принятие решения);

Технологической карты принятия решения, в которой отмечена логическая последовательность принятия решения, названы основные альтернативные решения;

Карточки решения, в которой после его принятия отмечается: причина возникновения проблемы, возможные концептуальные последствия непринятия решения, лицо, принимающее решение, вовлеченные лица, организации, первичная информация, необходимая для принятия решения, лицо, ответственное за исполнение решения.

В работе Л. Зайверта «Ваше время – в ваших руках» даются следующие рекомендации:

6.2. Организация выполнения принятых решений

Организация выполнения управленческих решений – это комплекс работ по их эффективному внедрению. Теорией и практикой разработаны принципиальные моменты, которые надо учитывать при выполнении принятых решений.

Прежде всего, необходимо расчленить общую программу действий на отдельные участки для соисполнителей. Затем надо довести задание до исполнителей и подготовить их к исполнению задания. Наконец, важную роль играет побуждение руководителей к его добросовестному исполнению. Формы реализации решений, т.е. доведение их до исполнителей, – это предписание, деловая беседа, убеждение, разъяснение, принуждение, наставление, сообщение, личный пример, обучение, совет, деловая игра, совещание, заседание и др.

Каждое отдельное задание руководитель «проигрывает» сам, ставя себя на место исполнителя в соответствующие условия. Во избежание неэффективной организации выполнения принятых решений рекомендуется придерживаться следующих рекомендаций:

1) обеспечивать соответствие каждой задачи деловым и психологическим особенностям исполнителей, для чего необходимо объективно оценивать их опыт и профессионализм;

2) добиваться взаимного доверия исполнителей общей задачи, организационными мерами обеспечивать однородность мотивов; система стимулов должна ориентировать исполнителей на качественное выполнение частей во имя цельного замысла;

3) мобилизовать коллектив на выполнение задания, а затем и плана организационно-технических мероприятий по реализации решения.

Основные моменты, которые затрудняют процесс разработки и принятия решения:

Недостаток и необъективность информации;

Ошибки собственного опыта и предпочтений;

Слабые собственные управленческие способности;

Неумение организовать процессы принятия и реализации решений.

Чтобы обеспечить эффективность процесса разработки и принятия решений, надо руководствоваться следующими рекомендациями:

1) люди никогда не берут на себя ответственность добровольно, и этого ждать от них не следует;

2) нельзя пускать на самотек процессы согласования на всех этапах, включая совещания и заседания, во избежание вмешательства в этот процесс возмущающих факторов;

3) никогда нельзя во всем полагаться на память, многие вещи надо фиксировать в записной книжке, ноутбуках;

4) учитывая, что самый высокий уровень навыков принятия решений требуется политикам, стратегам, военным, специалистам делового администрирования, необходимо для достижения этого уровня осваивать и пополнять знания по теории разработки управленческих решений.

6.3. Организация процесса коллективного принятия решений

Эволюция управленческой деятельности в зарубежном менеджменте имеет тенденцию к развитию групповых форм разработки решений. Причиной этому послужили процессы демократизации и повышения сложности решаемых проблем. Процесс коллективной выработки идей в современных западных фирмах осуществляется с помощью специально создаваемых команд, состоящих из групп специалистов различных сфер деятельности. Распространены комитеты как совещательные консультативные группы, кружки качества, целевые команды, комиссии и т.д.

Принятие решений в специально созданной группе приводит к появлению определенной линии поведения исполнителей и руководителей. В любом творческом коллективе, как показывают исследования, около 5% творческих личностей, 25% эрудитов, 20% аналитиков и 50% рядовых исполнителей. Руководители творческих групп характеризуются как демократы, пессимисты, диктаторы или организаторы.

Групповое решение предпочтительнее индивидуального в следующих случаях:

Если по этическим соображениям решение нельзя принимать кулуарно;

Если для принятия решения полезна их независимая экспертная оценка;

Когда руководитель затрудняется сам предложить альтернативные решения в достаточном количестве и т.д.

Исследования показали и негативные факты группового принятия решений, приводящие к появлению конформизма и «группового единомыслия».

Основные признаки приближения такого явления следующие:

Появление излишнего оптимизма и иллюзии независимости коллектива;

Коллективное устремление сметать на пути все возражения, противоположные групповому;

Безусловная вера в принятые коллективом принципы, открытое давление на сопротивляющихся мнению, иллюзия единодушия по принципу подавляющего большинства и т.д.

Во избежание появления «группового единомыслия» руководителю не следует создавать условий, удобных для возникновения таких ситуаций, стараться поощрять в коллективе разные мнения и не глушить голос меньшинства, чаще занимать нейтральную позицию и сохранять беспристрастность.

Любое коллективное творчество основано на индивидуальных мыслительных процессах, разработанные решения совместно оцениваются и сравниваются. Для принятия стратегических решений эффективен метод Дельфи; при необходимости выработать «100 идей за 100 минут» используется мозговой штурм; хорошо «работает» метод контрольных вопросов, конференции идей, коллективного блокнота, ассоциаций, морфологического ящика и другие.

7. МОДЕЛИРОВАНИЕ ПРОЦЕССА РАЗРАБОТКИ РЕШЕНИЯ

Для процедуры разработки управленческого решения руководителю и аппарату управления необходимо осуществить следующие действия:

1. Оформить документацию о начале выполнения работ с указанием конкретного задания, состава персонала и системы его подчинения, времени исполнения решений, промежуточных этапов контроля и размера выделяемых ресурсов.

2. Разработчикам решения разъяснить содержание организационных документов о начале выполнения работ по разработке решения.

3. Разработчикам решения разъяснить их права, ответственность и полномочия.

4. Обсудить с разработчиками неучтенные детали для успешного выполнения работ.

5. Акцентировать внимание на важности задания и значении его качественного исполнения.

6. После окончания разработки решения провести контроль со стороны юриста на соответствие его действующему законодательству и уставным документам организации.

7. Получить заключение о выполнимости вариантов и заключение экспертов об общей и экологической (если требуется) безопасности реализации решения.

Процедуры согласования управленческого решения с вышестоящими органами, заказчиками, клиентами следующие:

1. Оформить документацию на физических и юридических лиц, с которыми необходимо согласовать решение, временные периоды согласования.

2. Документально оформить акт согласования.

Процедуры принятия решения:

1. Документально подтвердить отсутствие в вариантах решения противоречивости.

2. Документально оформить набор критериев для выбора решения: наименования и значения.

3. Документально зафиксировать отклонения параметров решения от запланированных критериев.

4. Документально оформить процедуру принятия решения с указанием даты, ответственных лиц.

Процедуры утверждения решения:

1. Оформить документацию о физических и юридических лицах, у которых нужно утвердить решение.

2. Документально оформить акт утверждения.

Процедуры организации выполнения решения:

1. Оформить документацию о начале реализации решения с указанием необходимых элементов.

2. Разъяснить исполнителю содержание и порядок выполнения задания.

3. Разъяснить исполнителям их права, ответственность и полномочия при выполнении задания.

4. Обсудить с исполнителями неучтенные факторы для успешного выполнения работ.

5. Акцентировать внимание на важности предстоящей работы, выделить средства для реализации решения.

6. Активизировать работу исполнителей по эффективной реализации решения.

7.Осуществлять контроль за ходом реализации задания.

8. Сдать документацию по реализованному решению в архив.

8. РАЗНОВИДНОСТИ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ

8.1. Динамические модели.

Динамические модели стали развиваться во многом благодаря развитию вычислительной техники, так как связаны с необходимостью решать большое число (сотни) уравнений за короткий промежуток времени. Эти уравнения являются более или менее сложными математическими описаниями того, как функционирует исследуемая система и даются они в форме выражений для “уровней” различных типов, “темп” изменения которых регулируется управляющими функциями. Уравнения для уровней описывают накопление в системе таких, например, величин, как вес, количество энергии, количество организмов, а уравнения для темпов управляют изменением этих уровней во времени. Управляющие функции отражают правила, регулирующие функционирование системы. В динамических моделях часто используются уравнения неразрывности - соотношения между потоками переменной в какую-то часть системы и из нее со скоростью изменения этой переменной.

8.2. Балансовые модели .

Балансовые модели представляют моделируемый объект как совокупность неких потоков вещества и энергии, баланс которых рассчитывается на каждом шаге моделирования. Являются разновидностью динамических моделей. В настоящее время эти модели получили очень широкое распространение благодаря наглядности и сравнительно простой реализации. Однако применение их возможно лишь при решении, общеметодологических вопросов: баланс каких веществ является наиболее важным для рассмотрения; насколько целесообразно подробно прослеживать потоки данного вещества; как, выразить смену режимов трансформация веществ и т.п.

8.3. Поиск равновесия.

Этот подход основан на постулате о том, что любая большая система может иметь состояние равновесия. Например, в экономических системах это равновесие между спросом и предложением (по Н.Д.Кондратьеву – это равновесие «1-го порядка»), равновесие в структуре цен (равновесие 2-го порядка), равновесие основных капитальных благ» - промышленных изделий, сооружений, квалифицированной рабочей силы, технологий, источников энергии и т.д. (равновесие 3-го порядка).

В экологии может рассматриваться равновесие между определенной численностью хищников и их жертв, между загрязнением окружающей среды и ее способностью к самовосстановлению.

Поиск равновесия очень важен для исследования экономических и экологических систем. При этом следует различать динамическое и статическое равновесие.

Динамическое («подвижное») равновесие предполагает непрерывный обмен веществом и энергией между системой веществ и энергии, поглощаемых и выделяемых системой одинаковы. При динамическом равновесии сохраняется соответствие между частями системы, все размеры которой одновременно меняются.

Статическое равновесие означает сохранение того же соответствия при неизменных размерах (величинах) частей системы и системы в целом. Можно проиллюстрировать поиск равновесия на примере определения состояния насыщения рынка. Для этого было предложено уравнение

где х – количество товара, t - время, А, Р – константы.

Эта функция описывается «затухающей кривой». Было показано, что она описывает ряд общественных и экономических процессов, например, насыщение рынка книгами по специальным дисциплинам и т.п., если выполняются такие условия, как

Незаменимость товара,

Неизменность цен;

Отсутствие спекулятивных перепродаж;

Приобретение каждым покупателем равного количества;

Отсутствие повторных покупок товара.

Разумеется, это достаточно примитивное уравнение, которое не соответствует подвижному и динамическому равновесию. Для построения более адекватных моделей с равновесием необходимо использование обратных связей

9. ПОСТАНОВКА ЗАДАЧИ ВЕКТОРНОЙ ОПТИМИЗАЦИИ

В реальных задачах выбора наиболее предпочтительного решения, возникающих на практике, как правило, присутствуют несколько критериев оптимальности. Можно привести много примеров, когда требуется найти решение, для которого достигались наилучшие значения сразу по нескольким критериям. Наиболее распространенная задача, которую мы решаем очень часто (не облекая ее в термины оптимизации) - это поиск покупки, которая была как можно качественнее и как можно дешевле.

Задачи выбора некоторого решения из множества допустимых решений с учетом нескольких критериев оптимальности называют многокритериальной задачей оптимизации.

Многокритериальные задачи широко распространены в техническом проектировании, например, задача проектирования компьютера с максимальным быстродействием, максимальным объемом оперативной памяти и минимальным весом или задача проектирования электрического двигателя с максимальной мощностью, максимальным коэффициентом полезного действия, минимальным весом и минимальными затратами электротехнической стали (естественно, при ограничениях на необходимые параметры проектируемых устройств). Реальные многокритериальные управленческие задачи также широко распространены, лозунг экономики СССР 80-х гг. - «максимум качества при минимуме затрат», несмотря на его одиозность, выражал сущность большинства проблем управления.

Под многокритериальной задачей зачастую понимают не собственно вербальное описание задачи, а ее модель, а именно: «многокритериальная задача – математическая модель принятия оптимального решения по нескольким критериям. Эти критерии могут отражать оценки различных качеств объекта или процесса, по поводу которых принимается решение».

Формально многокритериальная задача как модель задается в виде:

где D - множество допустимых решений. F(x) – векторная функция векторного аргумента x, которую можно представить как F(x)={f1(x), f2(x), …, fk(x) }, где f1(x), f2(x), …, fk(x) – скалярные функции векторного аргумента x, каждая их которых является математическим выражением одного критерия оптимальности. Так как в данной модели используется векторная целевая функция, ее зачастую называют задачей векторной оптимизации. Очевидно, что задача (9.1) не принадлежит классу задач математического программирования, т.к. модели этого класса задач содержат всегда только одну целевую функцию векторного аргумента.

Сущность поставленной задачи состоит в нахождении такого ее допустимого решения, которое в том или ином смысле максимизирует (минимизирует) значения всех целевых функций fi(x), i=1,k. Существование решения, буквально максимизирующего все целевые функции, является редким исключением. (Если вспомнить пример о поиске одновременно очень качественной и очень дешевой покупки, то становится понятным, что нахождение такого решения – редкая удача, но, гораздо более часто, это неразрешимая задача).

Отсюда следует, что принципиальным моментом при решении такого рода задач является предварительная договоренность, а что считать самым предпочтительным решением, т.е. надо договориться об используемом принципе оптимальности. Ранее используемый принцип оптимальности «хорошо то, что доставляет наибольшее (наименьшее) значение имеющемуся единственному критерию оптимальности» в многокритериальных задачах очевидно «не работает».

Задача векторной оптимизации в общем случае не имеет строго математического решения. Для получения того или иного ее решения необходимо использовать дополнительную субъективную информацию специалиста в данной предметной области, которого принято называть лицом принимающим решение (ЛПР), в английском языке - decision maker. Это означает, что при решении задачи разными специалистами с привлечением различных источников информации, скорей всего будут получены различные ответы.

Задачи векторной оптимизации, в настоящее время принято рассматривать в рамках теории принятия решений, основной особенностью задач которой является наличие неопределенности. Эта неопределенность не может быть исключена с помощью различных приемов моделирования и объективных расчетов. В многокритериальных задачах неопределенность состоит в том, что неизвестно, какому критерию отдать предпочтение и в какой степени. Для устранения этой неопределенности необходимо, во-первых, сформулировать специальный принцип оптимальности, а также привлечь дополнительную субъективную информацию ЛПР, основанную на его опыте и интуиции.

10. МНОЖЕСТВО ЭДЖВОРТА – ПАРЕТО

10.1. Модель многокритериального выбора

Пусть имеются шкалы (непустые абстрактные множества) Y1 ,Y2 ,...,Ym

(m > 1). Они могут быть как конечными, так и бесконечными. На каждом множестве Yi будем считать заданным некоторое бинарное отношение fi, обладающее свойствами иррефлексивности, транзитивности и слабой связности i = 1,2,...,m. Слабая связность отношения fi означает, что для любых двух элементов s,t Yi, s ≠ t, выполняется либо соотношение s fi t , либо соотношениеt fi s . Отношениеfi можно трактовать как отношение строгого предпочтения на множестве значений i -го критерия. Оно асимметрично.

Введем в рассмотрение декартово произведение. Его элементы называют вариантами. Выбор осуществляется из множества в соответствии с определенной функцией выбора; он представляет собой некоторое подмножество множества A и обозначается далее Sel (A). Напомним, что однозначное отображение называют функцией выбора, если для любого подмножества , выполняется включение . По определению функции выбора в случае y′≠y′′ одновременно равенства Sel ({y′, y′′}) ={y′}, Sel ({y′, y′′})={y′′} выполняться не могут.

Заметим, что в общем случае для некоторых A возможно равенство , которое означает, что выбор является пустым. Другими словами, при предъявлении некоторых A вместо реального выбора из этого множества может иметь место «отказ от выбора».

10.2. Аксиомы разумного выбора

Сформулируем определенные требования к функциям выбора, которые можно назвать аксиомами разумного выбора. Как будет показано в следующих разделах, при выполнении этих требований всегда имеет место принцип Эджворта-Парето. Тем самым, аксиомы разумного выбора выделяют определенный достаточно широкий класс многокритериальных задач, в которых успешный выбор обязательно должен осуществляться в пределах множества Парето. Это означает, для указанного класса задач оптимальность по Парето является необходимым условием приемлемости выбираемых вариантов. Тогда как за пределами этого класса (т. е. тогда, когда хотя бы одна из аксиом разумного выбора нарушается) наилучший выбор не обязан быть парето-оптимальным.

Аксиома 1 . Для любых трех вариантов y′, y′′, y′′′, удовлетворяющих равенствам Sel ({y′, y′′}) = {y′} и Sel ({y′′, y′′′}) = {y′′}, всегда выполняется Sel ({y′, y′′′}) = {y′}.

Аксиома 1 устанавливает определенную естественную последовательность (логичность) в ходе осуществления выбора. Это свойство на языке бинарных отношений предпочтения носит название транзитивности.

Следует однако заметить, что при определенных обстоятельствах поведение человека, осуществляющего выбор, может оказаться несовместимым с аксиомой 1. Дело в том, что человек не всегда ведет себя разумно! Специалистам в области принятия решений давно известны случаи нарушения некоторыми индивидами свойства транзитивности, когда из трех предлагаемых решений первое предпочитается второму, второе предпочитается третьему, но при выборе из первого и третьего предпочтение отдается не первому, а третьему решению.

Аксиома 2 . Для любых двух вариантов y′, y′′, таких, что

y′ = (),

y′′ = (), ,

всегда выполняется равенство Sel ({y′, y′′}) = {y′}, i =1,2, ...,m .

Согласно аксиоме 2 вариант (и только этот вариант), являющийся более предпочтительным по какой-то одной компоненте по сравнению с другим вариантом при прочих равных условиях (т. е. при совпадении всех остальных компонент) обязательно будет выбран из данной пары.

Определение 1 . Условимся говорить, что i-й критерий независим по предпочтению от остальных критериев, если из выполнения для некоторых двух вариантов и , s ≠ t, принадлежащих множеству и связанных соотношением Sel ({a,b}) = {a}, всегда следует равенство Sel ({a′,b′}) = {a′}, в котором варианты и образованы с помощью произвольных компонент , удовлетворяющих включению a′,b′ .

Утверждение. Если выполнена аксиома 2, то каждый критерий независим по предпочтению от остальных.

Доказательство . Зафиксируем произвольный номер i {1,2,...,m} .

Пусть по условию для некоторых a,b имеет место равенство Sel ({a,b}) = {a}. Благодаря s ≠ t и слабой связности отношения , могут иметь место лишь два случая: t s или s t. Первый из них на самом деле невозможен, так как тогда на основании аксиомы 2 выполнялось бы равенство Sel ({a,b}) = {b}, противоречащее условиям Sel ({a,b}) = {a} и a ≠ b. Во втором случае согласно той же аксиоме 2 равенство Sel ({a′,b′}) = {a′} всегда будет выполнено для всех a′,b′ из определения 1. Утверждение доказано.

Аксиомы 1−2 накладывают определенные ограничения на функцию выбора в пределах всего множества , тогда как следующая аксиома относится к выбору из фиксированного подмножества вариантов.

Зафиксируем некоторое непустое подмножество , которое будем называть множеством возможных вариантов .

то выбор из множества возможных вариантов Y обязательно должен быть

произведен. При этом выбранными могут оказаться один, несколько или же бесконечное число вариантов.

Аксиома 3 . Для любой пары вариантов y′,y′′ Y, y′ ≠ y′′, таких, что Sel ({y′, y′′}) = {y′}, всегда выполняется y′′ Sel(Y) .

Аксиома 3 требует, чтобы вариант, не выбираемый в некоторой паре, не выбирался и из всего множества возможных вариантов Y .

Эта аксиома определенным образом связана с обратным условием Кондорсе [Айзерман и др. 1990], которое формулируется следующим образом:

y′′ Sel (Y) y′′ Sel ({y′, y′′}) для всех y ′ Y.

Заметим, что включение y′′ Sel ({y′, y′′}) в общем случае не исключает возможности y′ Sel ({y′, y′′}).

Очевидно, обратное условие Кондорсе для множества Y может быть

переписано в эквивалентной форме:

y′′ Sel ({y′, y′′}) для некоторого y′ Y y′′ Sel (Y), (1)

где y′′ Y. Сравнивая аксиому 3 с импликацией (1) и принимая во внимание, что

Sel ({y′, y′′}) = {y′}, y′ ≠ y′′ y′′ Sel ({y′, y′′}),

можно сделать вывод о том, что выполнение обратного условия Кондорсе влечет справедливость аксиомы 3, но не наоборот.

10.3. Аксиома Парето

Прежде чем формулировать аксиому Парето, введем следующее определение.

Определение 2 . Бинарное отношение , заданное на декартовом произведении при помощи эквивалентности

y′ y′′ [( или ) для всех i =1,2, ...,m] и y′ ≠ y′′ ,

где , , будем называть отношением Парето.

Аксиома Парето . Для двух любых вариантов y′,y′′ Y, связанных соотношением y′ y′′, всегда имеет место равенство

Sel ({y′, y′′}) = {y′}.

Как видим, аксиома Парето выражает собой определенное правило выбора из двух вариантов, находящихся друг с другом в отношении Парето. Согласно этому правилу если один вариант является более предпочтительным по сравнению с другим по какому-то одному или нескольким компонентам, то при прочих равных условиях (т. е. при совпадении всех остальных компонент данных двух вариантов) выбранным должен оказаться именно тот вариант, у которого имеются более предпочтительные компоненты. С точки зрения здравого смысла такое правило представляется вполне естественным.

Очевидно, из аксиомы Парето следует выполнение аксиомы 1, но не наоборот.

Лемма . Аксиома Парето является следствием аксиом 1 и 2.

Доказательство . Предположим, что для некоторых произвольно выбранных двух вариантов y′,y′′ Y выполняется соотношение y′ y′′. Не уменьшая общности последующего рассмотрения, предположим, что выполнение y′ y′′ означает, что для некоторого 1 l m справедливо

Благодаря аксиоме 2 имеем равенства:

………………………

Отсюда, последовательно применяя аксиому 1, получаем

А так как , k = l +1,...,m, то (2) принимает вид требуемого равенства Sel ({y′, y′′}) = {y′}.

10.4. Принцип Эджворта-Парето

Определение 3 . Множество парето-оптимальных вариантов (множество Парето) обозначается P(Y) и определяется равенством:

P(Y) = {y* Y| не существует y Y, такого, что y y*} .

Определение 4 . Множество недоминируемых вариантов обозначим Ndom(Y) и определим равенством:

Ndom(Y) = {y* Y| не существует y Y, y ≠ y*, такого, что Sel ({y, y*}) = {y}}.

Теорема (принцип Эджворта-Парето) . Для любой функции выбора Sel( ), подчиненной аксиомам 1–3, справедливо включение:

Sel(Y) P(Y) .

Доказательство . Зафиксируем произвольную функцию выбора Sel ( ), удовлетворяющую аксиомам 1–3.

Сначала установим справедливость включения:

Z-Sel (Y) Ndom(Y).

С этой целью произвольно выберем вариант y′′ Sel (Y) и предположим противное: y′′ Ndom(Y). Тогда по определению 4 найдется такой вариант y′ Y, что y′ ≠ y′′ и Sel ({y′, y′′}) = {y′}. Благодаря аксиоме 3 последнее равенство влечет y′′ Sel (Y). Это противоречит начальному допущению y′′ Sel (Y). Таким образом, включение (4) доказано.

Теперь проверим включение

Ndom (Y) P(Y).

Для этого произвольно выберем вариант y Ndom (Y). Допустим противное: y P(Y). Отсюда по определению 3 следует, что найдется такой вариант y′ Y, для которого верно соотношение y′ y. В условиях доказываемой теоремы благодаря лемме справедлива аксиома Парето. На основании этой аксиомы из соотношения y′ y вытекает равенство Sel ({y, y′}) = {y′}, причем y ≠ y′. Следовательно, y Ndom (Y). Полученное не совместимо с начальным предположением y Ndom (Y). Таким образом, включение (5) выполнено. Из (4)–(5) немедленно следует (3).

Теорема доказана.

Замечание. Как указано ранее, в (3) считается, что Sel(Y) ≠ .

Теорему 1 можно выразить следующим образом: произвольный выбор из множества возможных вариантов, подчиненный аксиомам 1–3, должен осуществляться в пределах множества Парето.

В целом требования, накладываемые аксиомами 1–3 на характер осуществляемого выбора, можно интерпретировать как разумное поведение лица, принимающего решение (ЛПР) в процессе выбора. Поэтому согласно доказанной теореме принцип Эджворта - Парето всегда выполняется, если поведение ЛПР разумно. А поскольку именно разумное поведение является наиболее распространенным, то этим обстоятельством можно объяснить чрезвычайно широкое и успешное применение «наивного» принципа Эджворта - Парето в принятии решений, теории игр, математической экономике и других областях, когда в любой задаче многокритериального выбора поиск наилучшего решения предлагается ограничить лишь пределами множества Парето.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш бизнес - От идеи до реализации